摘要:
A current limiting device utilizes an electrically conductive composite material and an inhomogeneous distribution of resistance structure. The electrically conductive composite material comprises an organic binder portion comprising a high Tg epoxy and a low viscosity polyglycol epoxy; at least one epoxy curing agent; and a conductive powder.
摘要:
A current limiting device utilizes an electrically conductive composite material and an inhomogeneous distribution of resistance structure. The electrically conductive composite material comprises an organic binder portion comprising a high Tg epoxy and a low viscosity polyglycol epoxy; at least one epoxy curing agent; and a conductive powder.
摘要:
A radiation imaging system comprising a scintillator, an imager array, and a lamination layer. Lamination layer bonds and optically couples scintillator to imager array. Lamination layer is comprised of a lamination material that is substantially free from void spaces. Radiation imaging system fabrication comprises the steps of disposing lamination layer between a light imager and a scintillator to form a subassembly. Light imager comprises imager array, an imaging plate surface and a plurality of contact pads. Additional steps include subjecting subassembly to a vacuum; heating subassembly to a bonding temperature, exerting a bonding force on subassembly, maintaining the vacuum, the bonding temperature and the bonding force until light imager is bonded to the scintillator and the lamination layer is comprised of lamination material that is substantially free from void spaces.
摘要:
A multi-chip electronics module is provided which utilizes benzocyclobutene as a laminate adhesive for bonding the upper dielectric films in a high density interconnect structure. The benzocyclobutene thermosetting polymer is spin coated on a polyimide film, and baked at low temperature to remove any solvent to leave a B-staged coating on the polyimide film. The composite film can be laminated to an underlying electrical structure using a vacuum laminator and heat. As the heat is applied, the BCB layer softens, flows and then cures to bond the polyimide film to the underlying electrical structure.
摘要:
A low dielectric constant printed circuit board includes: a low dielectric constant porous polymer layer having holes therethrough, the porous layer having pores; and a patterned metallization layer over surfaces of the low dielectric constant porous polymer layer and surfaces of the holes, the patterned metallization layer not significantly protruding into the pores of the porous layer.
摘要:
A method for fabricating a low dielectric constant printed circuit board includes dispersing an additive material in a low dielectric constant porous polymer layer; providing holes through the low dielectric constant porous polymer layer; applying a metallization layer over surfaces of the low dielectric constant porous polymer layer and surfaces of the holes; patterning the metallization layer; and removing the additive material from the low dielectric constant porous polymer layer. The removal of the additive material can be accomplished by sublimation, evaporation, and diffusion.
摘要:
A multi-chip module is provided which utilizes benzocyclobutene as a laminate adhesive for bonding the upper dielectric films in a high density interconnect structure. The benzocyclobutene thermosetting polymer is spin coated on a polyimide film, and baked at low temperature to remove any solvent to leave a B-staged coating on the polyimide film. The composite film can be laminated to an underlying electrical structure using a vacuum laminator and heat. As the heat is applied, the BCB layer softens, flows and then cures to bond the polyimide film to the underlying electrical structure.