Barrier layer deposition using HDP-CVD
    1.
    发明授权
    Barrier layer deposition using HDP-CVD 有权
    使用HDP-CVD进行阻挡层沉积

    公开(公告)号:US06399489B1

    公开(公告)日:2002-06-04

    申请号:US09431411

    申请日:1999-11-01

    摘要: A method of depositing a film, such as a barrier layer, on a substrate using a gaseous mixture including a hydrocarbon-containing gas and a silicon-containing gas. Suitable hydrocarbon-containing gases include alkanes such as methane (CH4), ethane (C2H6), butane (C3H8), propane (C4H10), etc. Suitable silicon-containing gases include silanes such as monosilane (SiH4). The method generally comprises providing a suitable gaseous mixture to the chamber, generating a plasma from the gaseous mixture, and depositing a film onto the substrate using the plasma. In a preferred embodiment, the film is deposited in a high-density plasma chemical vapor deposition (HDP-CVD) system. The gaseous mixture typically includes a silicon containing gas, such as an alkane, and a hydrocarbon containing gas, such as a silane. Embodiments of the method of the present invention can integrated stack structures having overall dielectric constant of about 4.0 or less. Such a structure may include a barrier layer having a dielectric constant of 4.5 or less.

    摘要翻译: 使用包含含烃气体和含硅气体的气体混合物在衬底上沉积诸如阻挡层的膜的方法。 合适的含烃气体包括烷烃如甲烷(CH4),乙烷(C2H6),丁烷(C3H8),丙烷(C​​4H10)等。合适的含硅气体包括硅烷如硅烷(SiH 4)。 该方法通常包括向腔室提供合适的气体混合物,从气体混合物产生等离子体,以及使用等离子体将膜沉积到衬底上。 在优选的实施方案中,膜以高密度等离子体化学气相沉积(HDP-CVD)系统沉积。 气态混合物通常包括含硅气体,例如烷烃,和含烃气体,例如硅烷。 本发明方法的实施方案可以具有总体介电常数为约4.0或更小的堆叠结构。 这种结构可以包括介电常数为4.5或更小的阻挡层。

    Barrier layer deposition using HDP-CVD
    2.
    发明授权
    Barrier layer deposition using HDP-CVD 失效
    使用HDP-CVD进行阻挡层沉积

    公开(公告)号:US06713390B2

    公开(公告)日:2004-03-30

    申请号:US10194398

    申请日:2002-07-12

    IPC分类号: H01L2144

    摘要: A method is provided for depositing a barrier layer on a substrate using a gaseous mixture that includes a hydrocarbon-containing gas and a silicon-containing gas. The gaseous mixture is provided to a process chamber and is used to form a plasma for depositing the barrier layer. The barrier layer is deposited with a thickness less than 500 Å. Suitable hydrocarbon-containing gases include alkanes and suitable silicon-containing gases include silanes.

    摘要翻译: 提供了一种使用包括含烃气体和含硅气体的气体混合物在基板上沉积阻挡层的方法。 将气体混合物提供到处理室,并用于形成用于沉积阻挡层的等离子体。 阻挡层以小于500埃的厚度沉积。 合适的含烃气体包括烷烃,合适的含硅气体包括硅烷。

    Method for improving barrier layer adhesion to HDP-FSG thin films
    3.
    发明授权
    Method for improving barrier layer adhesion to HDP-FSG thin films 有权
    改善与HDP-FSG薄膜的隔离层粘附性的方法

    公开(公告)号:US06410457B1

    公开(公告)日:2002-06-25

    申请号:US09569744

    申请日:2000-05-11

    IPC分类号: H01L2131

    摘要: A method of formation of a damascene FSG film with good adhesion to silicon nitride in an HDP-CVD system. Silane (SiH4), silicon tetrafluoride (SiF4), oxygen (O2) and argon (Ar) are used as the reactant gases. SiH4, SiF4, and O2 react to form the FSG. Ar is introduced to promote gas dissociation. All four gases are used for depositing most of the FSG film. SiH4 is not used during deposition of the interfacial part of the FSG film. The interfacial part of the FSG film refers either to the topmost portion, if silicon nitride is to be deposited on top of the FSG or the bottom portion if the FSG is to be deposited on top of silicon nitride. Using SiH4 with the SiF4 tends to mitigate the destructive effects of SiF4 throughout most of the deposition. By removing the SiH4 from the deposition of the interfacial part of the FSG film less hydrogen is incorporated into the film in the interfacial region and adhesion to overlying or underlying silicon nitride is improved.

    摘要翻译: 在HDP-CVD系统中形成对氮化硅具有良好粘附性的镶嵌FSG膜的方法。 使用硅烷(SiH 4),四氟化硅(SiF 4),氧(O 2)和氩(Ar)作为反应气体。 SiH4,SiF4和O2反应形成FSG。 引入Ar来促进气体分解。 所有四种气体都用于沉积大部分FSG膜。 在沉积FSG膜的界面部分期间不使用SiH4。 如果要将FSG沉积在氮化硅的顶部,则FSG膜的界面部分指的是最高部分,如果氮化硅沉积在FSG或底部的顶部。 SiF4与SiF4的共同作用倾向于减少SiF4在大部分沉积过程中的破坏作用。 通过从FSG膜的界面部分的沉积中除去SiH 4,在界面区域中较少的氢被引入到膜中,并且改善了覆盖或下面的氮化硅的粘合性。

    Apparatus for improving barrier layer adhesion to HDP-FSG thin films
    4.
    发明授权
    Apparatus for improving barrier layer adhesion to HDP-FSG thin films 失效
    用于改善与HDP-FSG薄膜的屏障层粘附性的装置

    公开(公告)号:US06803325B2

    公开(公告)日:2004-10-12

    申请号:US10120713

    申请日:2002-04-10

    IPC分类号: H01L2131

    摘要: A method of formation of a damascene FSG film with good adhesion to silicon nitride in an HDP-CVD system. Silane (SiH4), silicon tetrafluoride (SiF4), oxygen (O2) and argon (Ar) are used as the reactant gases. SiH4, SiF4, and O2 react to form the FSG. Ar is introduced to promote gas dissociation. All four gases are used for depositing most of the FSG film. SiH4 is not used during deposition of the interfacial part of the FSG film. The interfacial part of the FSG film refers either to the topmost portion, if silicon nitride is to be deposited on top of the FSG or the bottom portion if the FSG is to be deposited on top of silicon nitride. Using SiH4 with the SiF4 tends to mitigate the destructive effects of SiF4 throughout most of the deposition. By removing the SiH4 from the deposition of the interfacial part of the FSG film less hydrogen is incorporated into the film in the interfacial region and adhesion to overlying or underlying silicon nitride is improved.

    摘要翻译: 在HDP-CVD系统中形成对氮化硅具有良好粘附性的镶嵌FSG膜的方法。 使用硅烷(SiH 4),四氟化硅(SiF 4),氧(O 2)和氩(Ar)作为反应气体。 SiH4,SiF4和O2反应形成FSG。 引入Ar来促进气体分解。 所有四种气体都用于沉积大部分FSG膜。 在沉积FSG膜的界面部分期间不使用SiH4。 如果要将FSG沉积在氮化硅的顶部,则FSG膜的界面部分指的是最高部分,如果氮化硅沉积在FSG或底部的顶部。 SiF4与SiF4的共同作用倾向于减少SiF4在大部分沉积过程中的破坏作用。 通过从FSG膜的界面部分的沉积中除去SiH 4,在界面区域中较少的氢被引入到膜中,并且改善了覆盖或下面的氮化硅的粘合性。

    Method and apparatus for forming a dielectric film using helium as a carrier gas
    5.
    发明授权
    Method and apparatus for forming a dielectric film using helium as a carrier gas 失效
    使用氦气作为载气形成电介质膜的方法和装置

    公开(公告)号:US06599574B1

    公开(公告)日:2003-07-29

    申请号:US08627631

    申请日:1996-04-04

    IPC分类号: C23C1600

    摘要: The present invention relates to the deposition of dielectric layers, and more specifically to a method and apparatus for forming dielectric layers such as borophosphosilicate glass (BPSG) having improved film uniformity, higher deposition rate, superior gap fill/reflow capability, and smoother surface morphology. The method forms a dielectric layer with a process using helium carrier gas that produces substantially less downstream residue than conventional methods and apparatus, thereby reducing the need for chamber cleaning and increasing throughput of processed wafers. The present invention utilizes helium instead of nitrogen as carrier gas in a process for forming a dielectric layer such as BPSG to provide various unexpected benefits. According to one aspect, the present invention forms a dielectric film on a substrate, and prolongs a period between chamber cleanings in a system by using helium which produces substantially less downstream and upstream residue than a process using nitrogen. The method includes introducing a process gas containing silicon, oxygen, and first dopant atoms into the chamber; using helium as the carrier gas in the system; and processing more substrates between cleanings than a process using nitrogen as carrier gas. A further aspect of the invention includes annealing the dielectric films formed on the substrates at a lower temperature than required by the process using nitrogen as carrier gas.

    摘要翻译: 本发明涉及电介质层的沉积,更具体地涉及一种用于形成介电层的方法和装置,例如具有改进的膜均匀性,较高沉积速率,优异的间隙填充/回流能力和更平滑的表面形态的硼磷硅酸盐玻璃(BPSG) 。 该方法形成具有使用氦载气的方法的电介质层,其产生比常规方法和设备基本上更少的下游残留物,从而减少对室清洁的需要并增加处理的晶片的生产量。 本发明在形成诸如BPSG的介电层的工艺中使用氦代替氮作为载气,以提供各种意想不到的好处。 根据一个方面,本发明在衬底上形成介电膜,并且通过使用产生比使用氮的方法显着更少的下游和上游残留物的氦来延长系统中的室清洁之间的时间。 该方法包括将含有硅,氧和第一掺杂剂原子的工艺气体引入室中; 使用氦气作为系统中的载气; 并且在清洗之前处理比使用氮气作为载气的工艺更多的衬底。 本发明的另一方面包括在比使用氮作为载气的方法所要求的温度更低的温度下退火形成在基板上的电介质膜。

    Energy savings and global gas emissions monitoring and display
    6.
    发明授权
    Energy savings and global gas emissions monitoring and display 有权
    节能和全球气体排放监测和显示

    公开(公告)号:US09075408B2

    公开(公告)日:2015-07-07

    申请号:US12945869

    申请日:2010-11-14

    摘要: Methods and apparatus for enhanced control, monitoring and recording of incoming chemical and power use, and emissions of electronic device manufacturing systems are provided. In some embodiments, integrated sub-fab system systems may monitor the energy usage of the sub-fab equipment. The tool can enter many different depths of energy savings modes such as idle (shallow energy savings where production equipment can recover to normal production with no quality or throughput impact in seconds), sleep (deeper energy savings where production equipment can recover in minutes), or hibernate (where production equipment may require hours to recover not to have impact on quality, or throughput) for the system. In some embodiments, the system may monitor and display all gas emissions in a sub-fab as well as the Semi S23 method reporting of CO2 equivalent emission. The system may monitor effluent process gases and energy use from the process tool and sub-fab equipment.

    摘要翻译: 提供了用于增强控制,监控和记录进入的化学和电力使用以及电子设备制造系统的排放的方法和装置。 在一些实施例中,集成子晶圆厂系统系统可以监视子晶圆厂设备的能量使用。 该工具可以进入许多不同深度的节能模式,例如空闲(生产设备可以恢复到正常生产,质量或吞吐量影响在几秒钟内)的轻微节能,睡眠(生产设备可以在几分钟内恢复更深的节能), 或休眠(生产设备可能需要几个小时才能恢复,不影响质量或吞吐量)。 在一些实施例中,系统可以监测和显示子晶圆中的所有气体排放以及报告二氧化碳当量排放的半S23方法。 该系统可以从过程工具和辅助设备设备监测废气处理气体和能源使用。