摘要:
A method of formation of a damascene FSG film with good adhesion to silicon nitride in an HDP-CVD system. Silane (SiH4), silicon tetrafluoride (SiF4), oxygen (O2) and argon (Ar) are used as the reactant gases. SiH4, SiF4, and O2 react to form the FSG. Ar is introduced to promote gas dissociation. All four gases are used for depositing most of the FSG film. SiH4 is not used during deposition of the interfacial part of the FSG film. The interfacial part of the FSG film refers either to the topmost portion, if silicon nitride is to be deposited on top of the FSG or the bottom portion if the FSG is to be deposited on top of silicon nitride. Using SiH4 with the SiF4 tends to mitigate the destructive effects of SiF4 throughout most of the deposition. By removing the SiH4 from the deposition of the interfacial part of the FSG film less hydrogen is incorporated into the film in the interfacial region and adhesion to overlying or underlying silicon nitride is improved.
摘要:
A method of formation of a damascene FSG film with good adhesion to silicon nitride in an HDP-CVD system. Silane (SiH4), silicon tetrafluoride (SiF4), oxygen (O2) and argon (Ar) are used as the reactant gases. SiH4, SiF4, and O2 react to form the FSG. Ar is introduced to promote gas dissociation. All four gases are used for depositing most of the FSG film. SiH4 is not used during deposition of the interfacial part of the FSG film. The interfacial part of the FSG film refers either to the topmost portion, if silicon nitride is to be deposited on top of the FSG or the bottom portion if the FSG is to be deposited on top of silicon nitride. Using SiH4 with the SiF4 tends to mitigate the destructive effects of SiF4 throughout most of the deposition. By removing the SiH4 from the deposition of the interfacial part of the FSG film less hydrogen is incorporated into the film in the interfacial region and adhesion to overlying or underlying silicon nitride is improved.
摘要:
A method of forming an integrated circuit using a fluoro-organosilicate layer is disclosed. The fluoro-organosilicate layer is formed by applying an electric field to a gas mixture comprising a fluoro-organosilane compound and an oxidizing gas. The fluoro-organosilicate layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the fluoro-organosilicate layer is used as a hardmask. In another integrated circuit fabrication process, the fluoro-organosilicate layer is incorporated into a damascene structure.
摘要:
A SiC-based layer is deposited on a substrate having an electrical resistivity between about 1 and 100 Ω cm. The substrate is disposed in a process chamber. A gaseous mixture having a silicon-containing gas and a hydrocarbon-containing gas is flowed to the process chamber. A high-density plasma, having an ion density greater than about 1011 ions/cm3 is generated from the plasma. A small electrical bias, between about 0.65 and 1.30 W/cm2, is applied to the substrate. The low bias compensates for an unexpected cooling that results when depositing the SiC-based layer but is low enough that implantation of hydrogen is minimized.
摘要翻译:将SiC基层沉积在具有约1和100Ωcm之间的电阻率的基底上。 基板设置在处理室中。 具有含硅气体和含烃气体的气体混合物流入处理室。 从等离子体产生具有大于约10 11 /离子/ cm 3的离子密度的高密度等离子体。 将大约0.65和1.30W / cm 2之间的小的电偏压施加到基底上。 低偏压补偿了当沉积SiC基层时产生意外的冷却,但是足够低以使氢的注入最小化。
摘要:
A method is provided for forming a fluorinated silicate glass layer with HDP-CVD having a lower dielectric constant without compromising the mechanical properties of hardness and compressive stress. A gaseous mixture comprising a silicon-containing gas, an oxygen-containing gas, and a fluorine-containing gas is provided to a process chamber. The ratio of the flow rate of the fluorine-containing gas to the flow rate of the silicon-containing gas is greater than 0.65. A high-density plasma is generated from the gaseous mixture by applying a source RF power having a power density less than 12 W/cm2. A bias is applied to a substrate in the process chamber at a bias power density greater than 0.8 W/cm2 and less than 2.4 W/cm2. The fluorinated silicate glass layer is deposited onto the substrate using the high-density plasma.
摘要翻译:提供了一种用于在不影响硬度和压缩应力的机械性能的情况下形成具有较低介电常数的HDP-CVD的氟化硅酸盐玻璃层的方法。 将包含含硅气体,含氧气体和含氟气体的气体混合物提供到处理室。 含氟气体的流量与含硅气体的流量比大于0.65。 通过施加功率密度小于12W / cm 2的源RF功率,从气体混合物产生高密度等离子体。 以大于0.8W / cm 2且小于2.4W / cm 2的偏置功率密度对处理室中的衬底施加偏压。 使用高密度等离子体将氟化硅酸盐玻璃层沉积在基板上。
摘要:
A deposition/etching/deposition process is provided for filling a gap in a surface of a substrate. A liner is formed over the substrate so that distinctive reaction products are formed when it is exposed to a chemical etchant. The detection of such reaction products thus indicates that the portion of the film deposited during the first etching has been removed to an extent that further exposure to the etchant may remove the liner and expose underlying structures. Accordingly, the etching is stopped upon detection of distinctive reaction products and the next deposition in the deposition/etching/deposition process is begun.
摘要:
Embodiments of the invention generally provide methods of filling contact level features formed in a semiconductor device by depositing a barrier layer over the contact feature and then filing the layer using an PVD, CVD, ALD, electrochemical plating process (ECP) and/or electroless deposition processes. In one embodiment, the barrier layer has a catalytically active surface that will allow the electroless deposition of a metal on the barrier layer. In one aspect, the electrolessly deposited metal is copper or a copper alloy. In one aspect, the contact level feature is filled with a copper alloy by use of an electroless deposition process. In another aspect, a copper alloy is used to from a thin conductive copper layer that is used to subsequently fill features with a copper containing material by use of an ECP, PVD, CVD, and/or ALD deposition process. In one embodiment, a portion of the barrier layer is purposely allowed to react with traces of residual oxide at the silicon junction of the contact level feature to form a low resistance connection.
摘要:
A method of depositing and etching dielectric layers having low dielectric constants and etch rates that vary by at least 3:1 for formation of horizontal interconnects. The amount of carbon or hydrogen in the dielectric layer is varied by changes in deposition conditions to provide low k dielectric layers that can replace etch stop layers or conventional dielectric layers in damascene applications. A dual damascene structure having two or more dielectric layers with dielectric constants lower than about 4 can be deposited in a single reactor and then etched to form vertical and horizontal interconnects by varying the concentration of a carbon:oxygen gas such as carbon monoxide. The etch gases for forming vertical interconnects preferably comprises CO and a fluorocarbon, and CO is preferably excluded from etch gases for forming horizontal interconnects.
摘要:
A method of depositing a silica glass insulating film over a substrate. In one embodiment the method comprises exposing the substrate to a silicon-containing reactant introduced into a chamber in which the substrate is disposed such that one or more layers of the silicon-containing reactant are adsorbed onto the substrate; purging or evacuating the chamber of the silicon-containing reactant; converting the silicon-containing reactant into a silica glass insulating compound by exposing the substrate to oxygen radicals formed from a second reactant while biasing the substrate to promote a sputtering effect, wherein an average atomic mass of all atomic constituents in the second reactant is less than or equal to an average atomic mass of oxygen; and repeating the exposing, purging/evacuating and exposing sequence a plurality of times until a desired film thickness is reached.
摘要:
A method and apparatus for depositing a low dielectric constant film by reaction of an organosilicon compound and an oxidizing gas at a constant RF power level from about 10 W to about 200 W or a pulsed RF power level from about 20 W to about 500 W. Dissociation of the oxidizing gas can be increased prior to mixing with the organosilicon compound, preferably within a separate microwave chamber, to assist in controlling the carbon content of the deposited film. The oxidized organosilane or organosiloxane film has good barrier properties for use as a liner or cap layer adjacent other dielectric layers. The oxidized organosilane or organosiloxane film may also be used as an etch stop and an intermetal dielectric layer for fabricating dual damascene structures. The oxidized organosilane or organosiloxane films also provide excellent adhesion between different dielectric layers. A preferred oxidized organosilane film is produced by reaction of methylsilane, CH3SiH3, or dimethylsilane, (CH3)2SiH2, and nitrous oxide, N2O; at a constant RF power level from about 10 W to about 150 W, or a pulsed RF power level from about 20 W to about 250 W during 10% to 30% of the duty cycle.