摘要:
A coordination control device of a power output apparatus includes a coordination control unit. The coordination control unit calculates an intermediate value between the maximum value and minimum value among voltage controls for a first motor generator, and voltage control from an AC voltage control generation unit to generate an AC voltage across neutral points of first and second motor generators, and outputs a value that is each phase voltage control for the first and second motor generators minus the calculated intermediate value to a signal generation unit as the final voltage control for the first and second motor generators.
摘要:
An ECU detects an effective value and phase of a voltage from a commercial power supply, based on a voltage from a voltage sensor. Further, ECU generates a command current, which is a command value of current caused to flow through power lines and in-phase with the voltage of the commercial power supply, based on the detected effective value and the phase and on a charge/discharge power command value for a power storage device. Then, ECU controls zero-phase voltage of inverters based on the generated command current.
摘要:
An ECU detects an effective value and phase of a voltage from a commercial power supply, based on a voltage from a voltage sensor. Further, ECU generates a command current, which is a command value of current caused to flow through power lines and in-phase with the voltage of the commercial power supply, based on the detected effective value and the phase and on a charge/discharge power command value for a power storage device. Then, ECU controls zero-phase voltage of inverters based on the generated command current.
摘要:
A coordination control device of a power output apparatus includes a coordination control unit. The coordination control unit calculates an intermediate value between the maximum value and minimum value among voltage controls for a first motor generator, and voltage control from an AC voltage control generation unit to generate an AC voltage across neutral points of first and second motor generators, and outputs a value that is each phase voltage control for the first and second motor generators minus the calculated intermediate value to a signal generation unit as the final voltage control for the first and second motor generators.
摘要:
At the time of charging a power storage device from a commercial power supply, electric power from the commercial power supply is applied to a neutral point of each of first and second motor generators. A rotation preventing control unit (222) determines one phase to be subjected to switching control in the first inverter, based on a rotation angle (θ1) of the first motor generator. Further, rotation preventing control unit (222) calculates torque generated in the first motor generator, generates a torque control value for canceling out the torque, and outputs the value to a phase voltage operating unit (214) for motor control.
摘要:
An electrical powered vehicle includes a secondary self-resonant coil, a secondary coil, a rectifier, and a power storage device. The secondary self-resonant coil is configured to be magnetically coupled with a primary self-resonant coil of a power feeding device by magnetic field resonance, and allow reception of high frequency power from the primary self-resonant coil. The secondary coil is configured to allow reception of electric power from the secondary self-resonant coil by electromagnetic induction. The rectifier rectifies the electric power received by the secondary coil. The power storage device stores the electric power rectified by the rectifier.
摘要:
When it is determined that an electric storage is to be charged from a commercial power source, a controller sets a control target of a voltage of a power line to be controlled by a boost converter, based on a voltage of the commercial power source. Specifically, the controller sets the control target of the voltage to a level approximately equal to the crest value of voltage. Then, the controller outputs an input permission command to a relay circuit, and controls inverters to execute charging of the electric storage.
摘要:
An AC command voltage obtained by compensating a reference value of a commercial AC voltage output from a multiplication unit using an FB control unit is multiplied by k (0≦k≦1) by a multiplication unit and output to a first inverter control unit, and the remaining part is output to a second inverter control unit. The first and second inverter control units generate signals, based on command voltages obtained by superposing the AC command voltage from an AC output control unit on respective phase command voltages.
摘要翻译:通过使用FB控制单元补偿从乘法单元输出的商用AC电压的基准值而获得的交流指令电压乘以乘以k(0 <= k <= 1),并输出到第一逆变器控制单元 ,剩余部分输出到第二逆变器控制单元。 第一和第二逆变器控制单元基于通过将交流输出控制单元的交流指令电压叠加在相位相位指令电压上而获得的指令电压产生信号。
摘要:
An HV-ECU acquires electric power information from an electricity transmission line by using a modem. The electric power information includes information regarding the amount of carbon dioxide having been emitted in the generating process of the commercial electric power supplied from an electricity transmission line. When the CO2 emission amount is below a pre-set CO2 emission amount, the HV-ECU inputs the commercial electric power, and outputs a command to charge an electricity storage device to a motive power output device, so that the motive power output device executes a charging control of the electricity storage device.
摘要:
A first hybrid vehicle (10A) is connected to a house-side connector (40). A second hybrid vehicle (10B) is connected to the first hybrid vehicle (10A), and they are connected in parallel within the first hybrid vehicle (10A) with respect to a house load (20). When a commercial system power source (50) is interrupted, an automatic switching circuit (30) is activated, and the house load (20) receives electric power from the first and second hybrid vehicles (10A, 10B). The first hybrid vehicle (10A) determines allocations of the amounts of electric power supply from the first and second hybrid vehicles (10A, 10B) based on the amount of the house load (20) and on the residual amounts of fuel in the first and second hybrid vehicles (10A, 10B).