摘要:
An anisotropic exchange spring magnet powder complexing a hard magnetic material and a soft magnetic material, wherein a rare earth metal element, a transition metal element, boron and carbon and the like are contained, and the hard magnetic material and soft magnetic material have crystal particle diameters of 150 nm or less. A method of producing an anisotropic exchange spring magnet powder comprises treating a crystalline mother material containing a hard magnetic material and soft magnetic material or the crystalline mother material having amorphous parts, in a continuous process composed of an amorphising process and the following crystallizing process, repeated once or more times. An anisotropic exchange spring magnet is obtained by treatment, in an anisotropy- imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder.
摘要:
A bulk exchange-spring magnet 12, a method of producing the same, and a device 20 incorporating the bulk exchange-spring magnet are disclosed. The magnet includes magnet powders 10 having hard and soft phases, and boron and oxygen atoms which cohere in boundary areas 16 between grains 14 of the densified magnet powders 10. In a production method, the magnet powders 10 are compacted so as to incorporate boron and oxygen atoms into the boundary areas 16 and are heated under a compacted state of the magnet powders at varying operating temperatures for a given time period. This results in formation of a highly densified magnet at a lower potential operating temperature for a shorter time period without the grain growth. The device 20 includes the bulk exchange-spring magnet 12 containing the boron and oxygen atoms cohering between the grains of the densified magnet powders.
摘要:
An anisotropic exchange spring magnet powder complexing a hard magnetic material and a soft magnetic material, wherein a rare earth metal element, a transition metal element, boron and carbon and the like are contained, and the hard magnetic material and soft magnetic material have crystal particle diameters of 150 nm or less. A method of producing an anisotropic exchange spring magnet powder comprises treating a crystalline mother material containing a hard magnetic material and soft magnetic material or the crystalline mother material having amorphous parts, in a continuous process composed of an amorphising process and the following crystallizing process, repeated once or more times. An anisotropic exchange spring magnet is obtained by treatment, in an anisotropy-imparting molding process and a solidification process, of an anisotropic exchange spring magnet powder.
摘要:
This invention relates to an anisotropic magnet having excellent magnetic characteristics such as a high magnetic flux density, a process for producing the same, and a motor having the same.
摘要:
The invention is to provide a gas diffusion layer for fuel cells having excellent adaptability against load change by attaining a good balance between anti-dry-out properties and anti-flooding properties. The gas diffusion layer for fuel cells containing a substrate layer and an conductive fine particle layer is formed by coating a coating liquid for forming the conductive fine particle layer on at least one surface of a substrate for forming the substrate layer using a gravure roll and by a kiss coating. In coating of the coating liquid, a speed difference is generated between a line speed of transferring the substrate and a circumferential speed of the gravure roll, and apparent viscosity [η(Pa·s)] of the coating liquid as determined by type B viscosimeter satisfies the following relations: 1.0
摘要:
The invention is to provide a gas diffusion layer for fuel cells having excellent adaptability against load change by attaining a good balance between anti-dry-out properties and anti-flooding properties. The gas diffusion layer for fuel cells containing a substrate layer and an conductive fine particle layer is formed by coating a coating liquid for forming the conductive fine particle layer on at least one surface of a substrate for forming the substrate layer using a gravure roll and by a kiss coating. In coating of the coating liquid, a speed difference is generated between a line speed of transferring the substrate and a circumferential speed of the gravure roll, and apparent viscosity [η(Pa·s)] of the coating liquid as determined by type B viscosimeter satisfies the following relations: 1.0
摘要:
A gas diffusion electrode includes: an electrode catalyst layer; microporous layers arranged on the electrode catalyst layer and including at least second and first microporous layers, wherein the second microporous layer disposed on the electrode catalyst layer side is composed to have higher water repellency than the first microporous layer; and an oxidant gas diffusion substrate disposed on the microporous layers and formed of carbon fiber. According to the gas diffusion electrode of the present invention, drainability of generated water from the electrode catalyst layer to the gas diffusion layer and moisture retention and gas diffusibility of the electrode catalyst layer can be enhanced. Moreover, according to a solid polymer electrolyte fuel cell of the present invention, stable power generation characteristics can be obtained even under an operating condition with a wide humidity range and current density range.
摘要:
A reformer (8) reforms hydrocarbon fuel and generates reformate gas. A first carbon monoxide oxidizer (1) and second carbon monoxide oxidizer (2) disposed in series decrease the carbon monoxide concentration of the reformate gas by a prefential oxidation. The air for the preferential oxidation is supplied to the carbon monoxide oxidizer (1, 2) from a compressor (9). The reformer (8) consumes the water heated by the reaction heat of the first carbon monoxide oxidizer (1). The water amount supplied for the reformer (8) increases as a fuel reforming requirement of the reformer (8) increases. When the fuel reforming requirement increases, the water heating capability of the first carbon monoxide oxidizer (1) is enhanced with a sufficient response by increasing the proportion of air supplied to the first carbon monoxide oxidizer (1).
摘要:
A conductive film includes a layer 1 formed by a conductive material 1 that includes a polymer material 1 containing any of (1) an amine and an epoxy resin (where the epoxy resin and the amine are mixed in a ratio of 1.0 or more in terms of the ratio of the number of active hydrogen atoms in the amine with respect to the number of functional groups in the epoxy resin), (2) a phenoxy resin and an epoxy resin, (3) a saturated hydrocarbon polymer having a hydroxyl group, and (4) a curable resin and an elastomer and conductive particles 1. The conductive film has excellent stability in an equilibrium potential environment in a negative electrode and low electric resistance per unit area in the thickness direction. A multilayer conductive film including the conductive film achieves excellent interlayer adhesion, and using them as a current collector enables the production of a battery satisfying both weight reduction and durability.
摘要:
A gas diffusion layer for a fuel cell includes a conductive microparticle layer and a base material layer. The conductive microparticle layer is formed with first pores of no less than 0.5 μm and no more than 50 μm and second pores of no less than 0.05 μm and less than 0.5 μm. Pores are also formed in the base material layer. A total volume of the second pores is no less than 50% and less than 100% of a total volume of all of the pores in the conductive microparticle layer. By properly setting a pore size D1 of pores having a maximum volume ratio from among the first pores, water passages are formed in the first pores separately from gas passages formed in the second pores.