摘要:
Provided is a cell concentration and purification device, having: a function of continuously concentrating cells; a function of then subsequently disposing the cells continuously in a specific region of a channel; a function of simultaneously recognizing, based on an image, the shape and fluorescence emission of each single cell; and a function of recognizing the cells and then separating and purifying the same based on the data relating to the shape and fluorescence emission thereof.
摘要:
Provided is a cell concentration and purification device, having: a function of continuously concentrating cells; a function of then subsequently disposing the cells continuously in a specific region of a channel; a function of simultaneously recognizing, based on an image, the shape and fluorescence emission of each single cell; and a function of recognizing the cells and then separating and purifying the same based on the data relating to the shape and fluorescence emission thereof.
摘要:
Provided is a cell concentration/purification device having a function of successively locating cells in a specific area of a microchannel, and a function of sequentially capturing cell images by use of light from a plurality of monochromatic light sources on an image basis, and performing comparative analysis of the cell images to recognize individual cells based on information on the shape of the cells and an absorption spectral distribution of the cells or inside of the cells, thereby selectively separating/purifying the cells.
摘要:
An inexpensive cell analysis and separation apparatus using a flow channel formed on one surface of a substrate and a chip replaceable for each sample, and a method for culturing the separated cells without contamination, are provided. A flow channel for allowing a cell-containing buffer solution to flow is provided. Cells are detected in the middle of the flow channel, and separated to a plurality of downstream flow channels based on whether each cell fulfills a predetermined condition. A culturing tank for collecting the condition-fulfilling cells is covered with a semipermeable membrane at a top surface so as to prevent contamination during cell separation. When the cell separation is finished, the flow channel communicated with the culturing tank accommodating the condition-fulfilling cells is closed, and the culturing tank is cut off from the apparatus and put into a culturing device containing a predetermined medium to culture the cells.
摘要:
The present invention provides a liquid reflux reaction control device comprising: a reaction vessel having one or a plurality of wells configured to accommodate a sample; a heat exchange vessel provided in contact with the reaction vessel so as to conduct heat to the reaction vessel, and comprising an inlet and an outlet respectively for introducing and draining a liquid of a predetermined temperature; a plurality of liquid reservoir tanks provided with a temperature-controllable heat source for maintaining liquids of predetermined temperatures; a tubular flow channel that connects the inlet and the outlet of the heat exchange vessel with the liquid reservoir tanks; a pump disposed on the tubular flow channel, and configured to circulate the liquid between the heat exchange vessel and the liquid reservoir tank; and a switching valve disposed on the tubular flow channel, and configured to control the flow of the circulating liquid, which controls the temperature of the reaction vessel to keep a desired temperature by switching the flows of the liquids of the predetermined temperatures from the plurality of liquid reservoir tanks into the heat exchange vessel at a predetermined time interval, wherein the amount of the sample is less than or equal to several μL per well, and the total volume of the circulating liquid is more than or equal to several tens of mL per liquid reservoir tank.
摘要:
The present invention provides a liquid reflux reaction control device comprising: a reaction vessel having one or a plurality of wells configured to accommodate a sample; a heat exchange vessel provided in contact with the reaction vessel so as to conduct heat to the reaction vessel, and comprising an inlet and an outlet respectively for introducing and draining a liquid of a predetermined temperature; a plurality of liquid reservoir tanks provided with a temperature-controllable heat source for maintaining liquids of predetermined temperatures; a tubular flow channel that connects the inlet and the outlet of the heat exchange vessel with the liquid reservoir tanks; a pump disposed on the tubular flow channel, and configured to circulate the liquid between the heat exchange vessel and the liquid reservoir tank; and a switching valve disposed on the tubular flow channel, and configured to control the flow of the circulating liquid, which controls the temperature of the reaction vessel to keep a desired temperature by switching the flows of the liquids of the predetermined temperatures from the plurality of liquid reservoir tanks into the heat exchange vessel at a predetermined time interval, wherein the amount of the sample is less than or equal to several μL per well, and the total volume of the circulating liquid is more than or equal to several tens of mL per liquid reservoir tank.
摘要:
Provided is a device for concentrating and separating cells, which has a function for continuously concentrating cells; a function for then continuously arranging the concentrated cells in predetermined regions of a flow path; a function for simultaneously identifying shape and fluorescent emission in one-cell units on the basis of cell concentration and purification images, which serve to continuously separate and purify cells that have different properties in that they are either attracted to or repelled by an induction electrophoresis force of a predetermined frequency; and a function for identifying cells on the basis of this shape and fluorescent emission information and thereby separating and purifying the cells.
摘要:
Provided is a device for concentrating and separating cells, which has a function for continuously concentrating cells; a function for then continuously arranging the concentrated cells in predetermined regions of a flow path; a function for simultaneously identifying shape and fluorescent emission in one-cell units on the basis of cell concentration and purification images, which serve to continuously separate and purify cells that have different properties in that they are either attracted to or repelled by an induction electrophoresis force of a predetermined frequency; and a function for identifying cells on the basis of this shape and fluorescent emission information and thereby separating and purifying the cells.
摘要:
The present invention provides an apparatus for evaluating a drug effect enabling on-chip evaluation of the effect of a drug while the drug is acting on hERG-expressing cells. The present invention also provides a myocardial toxicity test apparatus and method therefor enabling in vitro myocardial toxicity testing that has previously been performed in vivo.A pulsating cell population and hERG-expressing cells (target model cells) are suitably isolated and arranged on a transparent substrate so that the two form gap junctions. The hERG-expressing cells are arranged on transparent electrodes provided on the transparent substrate. The hERG-expressing cells are exposed to a flow of a liquid containing a drug such that the drug acts thereon. The difference between the normal pulsation of hERG-expressing cells and the pulsation when a drug is acting thereon is captured via electric signals obtained from electrodes, and the properties of the change in potential are evaluated.
摘要:
A chip has been developed that can accurately measure cell potential and cell morphology on a single cell basis. The chip also constitutes a cardiac model that comprises a closed loop whereupon cardiomyocytes and fibroblasts are suitably dispersed and arranged, and that can evaluate the effects of a drug thereon. An in vitro cardiac reentry model chip is fabricated by constructing a closed loop comprising cardiomyocytes and fibroblasts arrayed on transparent electrodes formed on a transparent substrate by using a constitution where single cells are enclosed in a specific spatial configuration. A pulse wave of a random cardiomyocyte or a specific cardiomyocyte is propagated on both sides of the loop, and the pulsation status of the cells in the loop is detected electrically. A drug is applied to this cardiac reentry model chip, and the benefit or toxicity of the drug to cardiomyocytes is evaluated by measuring the cell potentials of individual cells.