摘要:
A detection apparatus includes a differential interference contrast microscope, a device for changing the amount of retardation between the two polarized components, a device for photographing the image of an object to be observed, and a device for performing a calculation with respect to the image captured by this photographing device. In the detection apparatus, amounts of retardation between two polarized components split in an illumination optical system of the differential interference contrast microscope are detected to form two differential interference contrast images relative to the object in which the amounts of retardation between the polarized components are equal, but have different signs. Subsequently, in the two differential interference contrast images, a differential calculation and a summed calculation are performed with regard to respective corresponding pixels to obtain a differential image and a summed image. The ratio of image information between the differential image and the summed image is calculated, and from the result of this calculation, image information in a predetermined range is extracted. In this way, the phase of the object can be detected.
摘要:
A microscope apparatus that has an electronic image pickup device arranged on an image surface of an imaging optical system, a component for separating light from a light source into two portions, a device for changing a phase difference between the two portions of light, a device for storing information on the images picked up by the image pickup device, and information processor for processing the information of images. The images are picked up by the electronic image pickup device as the phase difference is changed, and the information on the images is multiplied by a periodic function, as a weight function, which is given the phase difference as variable, and a resultant product is integrated so that a differential interference microscope apparatus capable of accurately obtaining a phase distribution of the object or a phase-contrast microscope apparatus capable of effectively enhancing a resolving power without lowering an image contrast is obtained.
摘要:
An optical image measuring device which can form a highly reliable image even if an object moves during scanning of a signal light is provided. An optical image forming device 1 comprises: an interferometer that splits a low coherence light L0 into a signal light LS and a reference light LR and generates an interference light LC by overlaying the signal light LS reflected by a fundus oculi with the reference light LR reflected by a reference mirror 14; a CCD 34 which receives the interference light LC and outputs a detection signal; Galvanometer mirrors 22 and 23 to scan the signal light LS in a main scanning direction and a sub-scanning direction; and a computer 40 forming tomographic images G1 to Gm along the main scanning direction at different positions of the sub-scanning direction. The Galvanometer mirrors 22 and 23 scan the signal light LS in a given direction crossing the main scanning direction, and the computer 40 forms a tomographic image for correction GR along the given direction to correct displacement of each topographic image Gi based on the tomographic image for correction GR.
摘要:
The present invention achieves multiplexing spectrum interference optical coherence tomography capable of full-range OCT measurement that causes no delays in measurement time due to high-order scans and is also free from complex conjugated images. This multiplexing spectrum interference optical coherence tomography comprises: a first beam splitter 3 positioned in an optical path 2 from a light source 1 and used to separate an object light 4 and a reference light 5; a galvano mirror 6 positioned in the optical path of the object light 4 and used to scan the object light onto a measured object 8; a second beam splitter 10 positioned in the optical path of the reference light 5; a first reference mirror 12 positioned in the optical path of a first reference light 11 separated by the second beam splitter 10; a second reference mirror 15 positioned in the optical path of a second reference light 13 separated by the second beam splitter 10; and a chopper 16 that passes the first reference light 11 and second reference light 13 alternately.
摘要:
A dental optical coherence tomography apparatus for measuring tissue in a stomatognathic region of a living body or an artificial composition in the stomatognathic region as a measured object includes: a variable wavelength light source (15); a light splitting portion (19) that splits light-source light emitted from the variable wavelength light source (15) into reference light (29) and measuring light (28); an interference portion (19) that causes the measuring light (28) and the reference light (29) to interfere with each other, thereby generating interference light; a photodetection portion (41) that measures the interference light; and an arithmetic portion (27b) that generates an image of a measured object (22) by Fourier transforming or inverse Fourier transforming the intensity of the interference light, whose wavelength changes with time, that has been detected by the photodetection portion for each of the wavelengths. Accordingly, an optical coherence tomography apparatus applicable to dental measurement can be provided.
摘要:
The present invention achieves multiplexing spectrum interference optical coherence tomography capable of full-range OCT measurement that causes no delays in measurement time due to high-order scans and is also free from complex conjugated images. This multiplexing spectrum interference optical coherence tomography comprises: a first beam splitter 3 positioned in an optical path 2 from a light source 1 and used to separate an object light 4 and a reference light 5; a galvano mirror 6 positioned in the optical path of the object light 4 and used to scan the object light onto a measured object 8; a second beam splitter 10 positioned in the optical path of the reference light 5; a first reference mirror 12 positioned in the optical path of a first reference light 11 separated by the second beam splitter 10; a second reference mirror 15 positioned in the optical path of a second reference light 13 separated by the second beam splitter 10; and a chopper 16 that passes the first reference light 11 and second reference light 13 alternately.
摘要:
An ellipsometry system and a detection unit thereof are capable of achieving miniaturization and price reduction associated therewith. The ellipsometry system includes the detection unit that: has an optical polarization element; separates an interference polarization beam obtained by causing the object-reflected polarization beam and reference reflected polarization beam to interfere with each other into a plurality of interference polarization beams on a wavelength basis; and detects the respective separated polarization components in each wavelength. The optical polarization element: has a birefringence characteristic including a first refractive index and a second refractive index; receives the separated interference polarization beams of the respective wavelengths in a wavelength order and in a parallel manner; separates the separated interference polarization beam of each wavelength, on a polarization component basis, while transmitting the same, and outputs the respective separated polarization components in each wavelength in the same direction but along different optical axes.
摘要:
An optical coherence eye-fundus tomography device has a high resolution and a good operability, as well as be miniaturized and be produced at a low cost. The optical coherence eye-fundus tomography device includes: a light source unit which emits a source light beam; a reference-light unit which reflects a reference light beam; an inspection unit which illuminates an object with an object scanning light beam, reflected the object scanning light beam; and a detection unit which obtains a tomographic image of the object on the basis of the interference light beam produced by interfering the reflected reference light beam with the reflected object light beam. For example, the light source unit emits the outgoing light beam that has a depth of focus of not less than 300 μm, and resolution that is 6 μm×6 μm or higher in a planar direction perpendicular to a traveling direction of the outgoing light beam.
摘要:
A dental optical coherence tomography apparatus for measuring tissue in a stomatognathic region of a living body or an artificial composition in the stomatognathic region as a measured object includes: a variable wavelength light source (15); a light splitting portion (19) that splits light-source light emitted from the variable wavelength light source (15) into reference light (29) and measuring light (28); an interference portion (19) that causes the measuring light (28) and the reference light (29) to interfere with each other, thereby generating interference light; a photodetection portion (41) that measures the interference light; and an arithmetic portion (27b) that generates an image of a measured object (22) by Fourier transforming or inverse Fourier transforming the intensity of the interference light, whose wavelength changes with time, that has been detected by the photodetection portion for each of the wavelengths. Accordingly, an optical coherence tomography apparatus applicable to dental measurement can be provided.
摘要:
Disclosed is an apparatus for determining the position of a mark on an object to be determined in terms of configuration, movement or any other geometrical or physical condition, using a photosensitive element and a light reflecting body in such a combination that the reflecter intercepts and casts to the photo-sensitive area of the element the beam of light from the mark, which beam of light would, otherwise, travel apart from the photo-sensitive element, not falling thereon. Thus, the measuring range of the photo-sensitive element is apparently extended, or otherwise the accuracy with which the mark position is determined is substantially improved.