Abstract:
An object of the present disclosure is to provide a charged particle beam apparatus that can quickly find a correction condition for a new aberration that is generated in association with beam adjustment. In order to achieve the above object, the present disclosure proposes a charged particle beam apparatus configured to include an objective lens (7) configured to focus a beam emitted from a charged particle source and irradiate a specimen, a visual field movement deflector (5 and 6) configured to deflect an arrival position of the beam with respect to the specimen, and an aberration correction unit (3 and 4) disposed between the visual field movement deflector and the charged particle source, in which the aberration correction unit is configured to suppress a change in the arrival position of the beam irradiated under different beam irradiation conditions.
Abstract:
The present disclosure aims at proposing a multi-beam irradiation device capable of correcting off-axis aberrations. In order to achieve the above object, a beam irradiation device is proposed, which includes a beam source which emits a plurality of beams; an objective lens (17) which focuses a beam on a sample; a first lens (16) which is arranged such that a lens main surface is positioned at an object point of the objective lens and deflects a plurality of incident beams toward an intersection point of a lens main surface of the objective lens and an optical axis; a second lens (15) which is arranged closer to a beam source side than the first lens and focuses the plurality of beams on a lens main surface of the first lens; and a third lens (14) which is arranged closer to the beam source side than the second lens and deflects the plurality of beams toward an intersection point of a lens main surface of the second lens and the optical axis.
Abstract:
Proposed are an electrostatic chuck mechanism and a charged particle beam apparatus including a first plane that is a plane of a side in which a sample is adsorbed, a first electrode to which a voltage for generating an adsorptive power between the first plane and the sample is applied, and a second electrode that is arranged in a position relatively separated from the sample toward the first plane and through which a virtual line that is perpendicular to the first plane and contacts an edge of the sample passes, wherein the first plane is formed so that a size in a plane direction of the first plane is smaller than that of the sample.
Abstract:
An object of the present disclosure is to provide a charged particle beam apparatus that can quickly find a correction condition for a new aberration that is generated in association with beam adjustment. In order to achieve the above object, the present disclosure proposes a charged particle beam apparatus configured to include an objective lens (7) configured to focus a beam emitted from a charged particle source and irradiate a specimen, a visual field movement deflector (5 and 6) configured to deflect an arrival position of the beam with respect to the specimen, and an aberration correction unit (3 and 4) disposed between the visual field movement deflector and the charged particle source, in which the aberration correction unit is configured to suppress a change in the arrival position of the beam irradiated under different beam irradiation conditions.
Abstract:
An object of the present disclosure is to provide a charged particle beam apparatus that can quickly find a correction condition for a new aberration that is generated in association with beam adjustment. In order to achieve the above object, the present disclosure proposes a charged particle beam apparatus configured to include an objective lens (7) configured to focus a beam emitted from a charged particle source and irradiate a specimen, a visual field movement deflector (5 and 6) configured to deflect an arrival position of the beam with respect to the specimen, and an aberration correction unit (3 and 4) disposed between the visual field movement deflector and the charged particle source, in which the aberration correction unit is configured to suppress a change in the arrival position of the beam irradiated under different beam irradiation conditions.
Abstract:
The objective of the present invention is to provide a charged-particle beam device capable of moving a field-of-view to an exact position even when moving the field-of-view above an actual sample. In order to attain this objective, a charged-particle beam device is proposed comprising an objective lens whereby a charged-particle beam is focused and irradiated onto a sample: a field-of-view moving deflector for deflecting the charged-particle beam; and a stage onto which the sample is placed. The charged-particle beam device is equipped with a control device which controls the lens conditions for the objective lens in such a manner that the charged-particle been focuses on the sample which is to be measured; moves the field-of-view via the field-of-view moving deflector while maintaining the lens conditions; acquires a plurality of images at each position among a reference pattern extending in a specified direction; and uses the plurality of acquired images to adjust the signal supplied to the field-of-view moving deflector.
Abstract:
In a charged particle beam apparatus that applies a retarding voltage to a sample through a contact terminal and executes measurement or inspection of a surface of the sample, potential variation of the sample when changing the retarding voltage applied to the contact terminal is measured by a surface potential meter, a time constant of the potential variation of the sample is obtained, and it is determined whether execution of measurement or inspection by a charged particle beam continues or stops based on the time constant, or a conduction ensuring process between the sample and the contact terminal is executed.
Abstract:
The present invention explains a charged-particle beam device for the purpose of highly accurately measuring electrostatic charge of a sample in a held state by an electrostatic chuck (105). In order to attain the object, according to the present invention, there is proposed a charged-particle beam device including an electrostatic chuck (105) for holding a sample on which a charged particle beam is irradiated and a sample chamber (102) in which the electrostatic chuck (105) is set. The charged-particle beam device includes a potential measuring device that measures potential on a side of an attraction surface for the sample of the electrostatic chuck (105) and a control device that performs potential measurement by the potential measuring device in a state in which the sample is attracted by the electrostatic chuck (105).