Abstract:
A multi-view point 3D display apparatus using an active optical device is provided. The active optical device may change a path of light without a substantial drop of image resolution.
Abstract:
A backlight unit of a three-dimensional (3D) display has a plurality of cells and a 3D image is formed by adjusting directions of light emitted from the cells. The backlight unit includes an emission unit that adjusts an emission direction of light from a cell with respect to other cells. The backlight unit divides view areas to provide left-eye and right-eye images, thereby generating a 3D image.
Abstract:
An all-in-one light guide plate, a backlight apparatus employing the same, and a method of manufacturing the all-in-one light guide plate are provided. The all-in-one light guide plate has a structure in which a plurality of protrusion type refractive elements for outputting light are integrated into the light guide member. It is possible to improve optical properties by more densely arranging the refractive elements with distance from the light source.
Abstract:
A changeable liquid lens array and a method of manufacturing the same. The changeable liquid lens array includes a substrate, a plurality of partition walls arrayed on the substrate and having a fluid travel path, cells defined by the plurality of partition walls, a first fluid comprised in the cells, a second fluid arranged on the first fluid, a first electrode arranged on at least one side surface of each of the partition walls, and a second electrode disposed to be separate from the partition walls. A shape of shape of an interface between the first fluid and the second fluid changes based on a voltage that is applied to the first electrode and the second electrode.
Abstract:
Provided are a light guide member, a lighting apparatus including the light guide member, and a method of fabricating the light guide member. The light guide member comprises: a body, which is formed as a transparent plate, including a first surface and a second surface facing the first surface; and a plurality of dimple type optical controllers formed beneath at least one of the first surface and the second surface and having reflective surfaces that reflect light proceeding between the first and second surfaces of the body toward at least one of the first and second surfaces.
Abstract:
Provided is a front light unit and a flat panel display apparatus that includes the front light unit. The front light unit includes a light source, a light guide plate that guides light emitted from the light source and comprises a rear surface through which the guided light is emitted and a front surface facing the rear surface, and a plurality of prism shape structures which are provided in one unit with the light guide plate and emits light totally reflected from the front surface of the light guide plate. The light guide plate and the prism shape structures are formed of a transparent elastic material.
Abstract:
A light guide plate includes a plurality of quantum dots on at least one of a surface of the light guide plate and inside the light guide plate, wherein the plurality of quantum dots emit light having a different wavelength than a light incident thereto.
Abstract:
Provided are examples of light modulators and optical apparatuses that may include the light modulators. A light modulator may include a plasmonic nano-antenna and an element for changing plasmon resonance characteristics of the plasmonic nano-antenna. The plasmon resonance characteristics of the plasmonic nano-antenna may be changed due to a change in refractive index of the element, and thus light may be modulated.
Abstract:
An acousto-optic device capable of increasing a range of a diffraction angle of output light by using a nanostructured acousto-optic medium, and an optical scanner, an optical modulator, a two-dimensional/three-dimensional (2D/3D) conversion stereoscopic image display apparatus, and a holographic display apparatus using the acousto-optic device. The acousto-optic device may include a nanostructured acousto-optic medium formed by at least two different mediums repeatedly alternating with each other, wherein at least one of the at least two different mediums includes an acousto-optic medium. The acousto-optic device having the aforementioned structure may increase the range of a diffraction angle of output light. Thus, various systems such as the optical scanner, the optical modulator, the 2D/3D conversion stereoscopic image display apparatus, and the holographic display apparatus may not require a separate optical system to increase an operational angle range, thereby decreasing a size of the system and/or improving a resolution of the system.
Abstract:
A method for forming colloidal photonic crystals comprises; surrounding an outer circumference of a cylinder with a flexible substrate, spacing the cylinder a predetermined distance from a panel coated with a colloidal solution, and rotating the cylinder to form colloidal photonic crystals on the flexible panel.