摘要:
A method and structure to form shallow trench isolation regions without trench oxide grooving is provided. In particular, a method includes a two-step oxide process in which an oxide liner lines the inside surface of a trench and the trench is filled with a bulk oxide layer, preferably using a high density plasma chemical vapor deposition (HDP-CVD) process. The oxide liner and the bulk oxide layer are formed to have similar etch rates. Thus, when etching the oxide liner and the bulk oxide layer between stack structures, a common dielectric top surface is formed that is substantially planar and without grooves.
摘要:
A method and structure to form shallow trench isolation regions without trench oxide grooving is provided. In particular, a method includes a two-step oxide process in which an oxide liner lines the inside surface of a trench and the trench is filled with a bulk oxide layer, preferably using a high density plasma chemical vapor deposition (HDP-CVD) process. The oxide liner and the bulk oxide layer are formed to have similar etch rates. Thus, when etching the oxide liner and the bulk oxide layer between stack structures, a common dielectric top surface is formed that is substantially planar and without grooves.
摘要:
A method and structure to form shallow trench isolation regions without trench oxide grooving is provided. In particular, a method includes a two-step oxide process in which an oxide liner lines the inside surface of a trench and the trench is filled with a bulk oxide layer, preferably using a high density plasma chemical vapor deposition (HDP-CVD) process. The oxide liner and the bulk oxide layer are formed to have similar etch rates. Thus, when etching the oxide liner and the bulk oxide layer between stack structures, a common dielectric top surface is formed that is substantially planar and without grooves.
摘要:
Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse as deeply through already oxidized layers of the sidewall such as silicon oxide layers. As a result, a more uniform sidewall dielectric can be fabricated with more uniform breakdown voltages along it height.
摘要:
Conventional fabrication of sidewall oxide around an ONO-type memory cell stack usually produces Bird's Beak because prior to the fabrication, there is an exposed sidewall of the ONO-type memory cell stack that exposes side parts of a plurality of material layers respectively composed of different materials. Certain materials in the stack such as silicon nitrides are more difficult to oxidize than other materials in the stack such polysilicon. As a result oxidation does not proceed uniformly along the multi-layered height of the sidewall. The present disclosure shows how radical-based fabrication of sidewall dielectric can help to reduce the Bird's Beak formation. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse as deeply through already oxidized layers of the sidewall such as silicon oxide layers. As a result, a more uniform sidewall dielectric can be fabricated with more uniform breakdown voltages along it height.
摘要:
Conventional fabrication of top oxide in an ONO-type memory cell stack usually produces Bird's Beak. Certain materials in the stack such as silicon nitrides are relatively difficult to oxidize. As a result oxidation does not proceed uniformly along the multi-layered height of the ONO-type stack. The present disclosure shows how radical-based fabrication of top-oxide of an ONO stack (i.e. by ISSG method) can help to reduce formation of Bird's Beak. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse deeply through already oxidized layers of the ONO stack such as the lower silicon oxide layer. As a result, a more uniform top oxide dielectric can be fabricated with more uniform breakdown voltages along its height. Additionally, adjacent low and high voltage transistors may benefit from simultaneous formation of their gate dielectrics with use of the radical-based oxidizing method.
摘要:
A method and apparatus are disclosed for reducing the concentration of chlorine and/or other bound contaminants within a semiconductor oxide composition that is formed by chemical vapor deposition (CVD) using a semiconductor-element-providing reactant such as dichlorosilane (DCS) and an oxygen-providing reactant such as N2O. In one embodiment, a DCS-HTO film is annealed by heating N2O gas to a temperature in the range of about 825° C. to about 950° C. so as to trigger exothermic decomposition of the N2O gas and flowing the heated gas across the DCS-HTO film so that disassociated atomic oxygen radicals within the heated N2O gas can transfer disassociating energy to chlorine atoms bound within the DCS-HTO film and so that the atomic oxygen radicals can fill oxygen vacancies within the semiconductor-oxide matrix of DCS-HTO film. An improved ONO structure may be formed with the annealed DCS-HTO film for use in floating gate or other memory applications.
摘要翻译:公开了一种方法和装置,用于降低通过化学气相沉积(CVD)形成的半导体氧化物组合物中的氯和/或其它结合的污染物的浓度,所述半导体氧化物组合物使用提供半导体元素的反应物如二氯硅烷(DCS)和氧 提供反应物如N 2 O。 在一个实施方案中,通过将N 2 O 2气体加热至约825℃至约950℃的温度来退火DCS-HTO膜,以引发放热分解 N 2 O气体并使加热的气体流过DCS-HTO膜,使得加热的N 2 O气体内的解离的原子氧自由基能够将分解能量转移到结合的氯原子上 在DCS-HTO膜内,使得原子氧自由基可以填充DCS-HTO膜的半导体氧化物基质内的氧空位。 可以用退火的DCS-HTO膜形成改进的ONO结构,用于浮动栅极或其他存储器应用中。
摘要:
A thin buffer layer of SiON is formed on the top surface of the floating gate, in order to protect the polysilicon surface from attack by atomic chlorine produced during the formation of the high temperature oxide of the ONO stack. The buffer layer can also be formed on other dielectric surfaces which are otherwise subject to adverse conditions in subsequent processing, such as the nitride layer in the ONO dielectric stack.
摘要:
A method for forming within an integrated circuit a low impurity diffusion polysilicon layer. Formed upon a semiconductor substrate is an amorphous silicon layer. Formed also upon the semiconductor substrate and contacting the amorphous silicon layer is a polysilicon layer. The amorphous silicon layer and the polysilicon layer are then simultaneously annealed to form a low impurity diffusion polysilicon layer. The low impurity diffusion polysilicon layer is a polysilicon multi-layer with grain boundary mis-matched polycrystalline properties. Optionally, a metal silicide layer may be formed upon the amorphous silicon layer and the polysilicon layer either prior to or subsequent to annealing the amorphous silicon layer and the polysilicon layer. The metal silicide layer and low impurity diffusion polysilicon layer may then be patterned to form a polycide gate electrode.
摘要:
Conventional fabrication of top oxide in an ONO-type memory cell stack usually produces Bird's Beak. Certain materials in the stack such as silicon nitrides are relatively difficult to oxidize. As a result oxidation does not proceed uniformly along the multi-layered height of the ONO-type stack. The present disclosure shows how radical-based fabrication of top-oxide of an ONO stack (i.e. by ISSG method) can help to reduce formation of Bird's Beak. More specifically, it is indicated that short-lived oxidizing agents (e.g., atomic oxygen) are able to better oxidize difficult to oxidize materials such as silicon nitride and the it is indicated that the short-lived oxidizing agents alternatively or additionally do not diffuse deeply through already oxidized layers of the ONO stack such as the lower silicon oxide layer. As a result, a more uniform top oxide dielectric can be fabricated with more uniform breakdown voltages along its height. Additionally, adjacent low and high voltage transistors may benefit from simultaneous formation of their gate dielectrics with use of the radical-based oxidizing method.