摘要:
A method of forming a device includes providing a substrate, forming an interfacial layer on the substrate, depositing a high-k dielectric layer on the interfacial layer, depositing an oxygen scavenging layer on the high-k dielectric layer and performing an anneal. A high-k metal gate transistor includes a substrate, an interfacial layer on the substrate, a high-k dielectric layer on the interfacial layer and an oxygen scavenging layer on the high-k dielectric layer.
摘要:
Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
摘要:
Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
摘要:
Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
摘要:
Methods for fabricating gate electrode/high-k dielectric gate structures having an improved resistance to the growth of silicon dioxide (oxide) at the dielectric/silicon-based substrate interface. In an embodiment, a method of forming a transistor gate structure comprises: incorporating nitrogen into a silicon-based substrate proximate a surface of the substrate; depositing a high-k gate dielectric across the silicon-based substrate; and depositing a gate electrode across the high-k dielectric to form the gate structure. In one embodiment, the gate electrode comprises titanium nitride rich in titanium for inhibiting diffusion of oxygen.
摘要:
A gate structure for complementary metal oxide semiconductor (CMOS) devices includes a first gate stack having a first gate dielectric layer formed over a substrate, and a first metal layer formed over the first gate dielectric layer. A second gate stack includes a second gate dielectric layer formed over the substrate and a second metal layer formed over the second gate dielectric layer. The first metal layer is formed in manner so as to impart a tensile stress on the substrate, and the second metal layer is formed in a manner so as to impart a compressive stress on the substrate.
摘要:
The present invention provides a scanning transmission electron microscope (STEM). In the STEM, a specimen is sandwiched between a variable axis objective lens and a variable axis collection lens. The axis of the collection lens varies along with the variation of the objective lens axis in a coordinated manner. The STEM of the invention exhibits technical merits such as large scanning field, high image resolution across the entire scanning field, and high throughput, among others.
摘要:
The methods of the invention provide improved rice grain nutrition by manipulation of the rice starch crystalline structure leading to easier penetration of nutrients into the rice grain and enhancement of rice grains with nutrients, thereby creating enhanced rice grain products. In addition, methods of direct delivery of nutrients into rice grains are also presented.
摘要:
An apparatus comprising: a first resonant circuit configured to have an impedance at a first operational frequency band to impedance match a first radiator to radio circuitry, and to have an impedance at a second operational frequency band to impedance match a second radiator to the radio circuitry; a second resonant circuit configured to have an impedance at the first operational frequency band to impedance match the first radiator to the radio circuitry, and to have an impedance at the second operational frequency band to impedance match the second radiator to the radio circuitry; and a third resonant circuit configured to have an impedance at the first operational frequency band to impedance match the first radiator to the radio circuitry, and to have an impedance at the second operational frequency band to impedance match the second radiator to the radio circuitry.
摘要:
A truck includes a frame, an operator cab on the frame and a drive axle having a differential. The differential can be connected to a drive shaft. A fairing for directing air flow around the differential is attached to the frame forward of the drive axle and forward of the differential. The fairing can have a non-deflected position and a deflected position.