Abstract:
The invention relates to a process for preparing a gelled, dried composition forming a monolithic aerogel with a heat conductivity of less than or equal to 40 mW·m−1·K−1 and derived from a resin of polyhydroxybenzene(s) and formaldehyde(s), to this aerogel composition and to the use thereof. This process comprises: a) polymerization in an aqueous solvent of said polyhydroxybenzene(s) and formaldehyde(s) in the presence of an acidic or basic catalyst, to obtain a solution based on the resin, b) gelation of the solution obtained in a) to obtain a gel of the resin, and c) drying of the gel to obtain a dried gel. According to the invention, step a) is performed in the presence of a cationic polyelectrolyte dissolved in this solvent, and the process also comprises a step d) of heat treatment under inert gas of the dried gel obtained in step c) at temperatures of between 150° C. and 500° C. to obtain the non-pyrolyzed aerogel whose heat conductivity is substantially unchanged, even after exposure to a humid atmosphere.
Abstract:
Provided is a gelled carbon-based composition forming an organic polymeric monolithic gel capable of forming a porous carbon monolith by pyrolysis, a use thereof and a process for preparing this composition. A composition according to the invention is based on a resin derived at least partly from polyhydroxybenzene(s) R and formaldehyde(s) F, has a thermal conductivity of less than or equal to 40 mW·m−1·K−1, and includes at least one water-soluble cationic polyelectrolyte P. A process for preparing this composition comprises: a) polymerization, in an aqueous solvent, of the polyhydroxybenzene(s) and formaldehyde(s), in the presence of at least one cationic polyelectrolyte dissolved in this solvent and of a catalyst, in order to obtain a solution based on the resin, b) gelling of the solution in order to obtain a gel, and c) drying in order to obtain the organic polymeric monolithic gel.
Abstract:
The invention relates to a process for preparing a gelled, dried composition forming a monolithic aerogel with a heat conductivity of less than or equal to 40 mW·m−1·K−1 and derived from a resin of polyhydroxybenzene(s) and formaldehyde(s), to this aerogel composition and to the use thereof. This process comprises: a) polymerization in an aqueous solvent of said polyhydroxybenzene(s) and formaldehyde(s) in the presence of an acidic or basic catalyst, to obtain a solution based on the resin, b) gelation of the solution obtained in a) to obtain a gel of the resin, and c) drying of the gel to obtain a dried gel. According to the invention, step a) is performed in the presence of a cationic polyelectrolyte dissolved in this solvent, and the process also comprises a step d) of heat treatment under inert gas of the dried gel obtained in step c) at temperatures of between 150° C. and 500° C. to obtain the non-pyrolyzed aerogel whose heat conductivity is substantially unchanged, even after exposure to a humid atmosphere.
Abstract:
The present invention relates to a flexible composite organic aerogel (1) comprising: a textile reinforcement (5), an organic aerogel (3) placed within said textile reinforcement (3), said organic aerogel (3) being based on a resin resulting at least in part from polyhydroxybenzene(s) R and formaldehyde(s) F, said organic aerogel (3) being a polymeric organic gel comprising at least one water-soluble cationic polyelectrolyte, or said organic aerogel (3) being a pyrolysate of said gel in the form of a porous carbon monolith comprising the product of the pyrolysis of said at least one water-soluble cationic polyelectrolyte P, said organic aerogel (3) exhibiting a specific thermal conductivity of between 10 and 40 mW·m−1·K−1 at atmospheric pressure.
Abstract:
The present invention relates to a vacuum insulation board (1) comprising: a hermetically closed covering (3) in which the pressure is lower than atmospheric pressure, a core material (5) made of organic aerogel placed inside said covering (3), said organic aerogel being based on a resin resulting at least in part from polyhydroxybenzene(s) R and formaldehyde(s) F, said organic aerogel being a polymeric monolithic organic gel comprising at least one water-soluble cationic polyelectrolyte, or said organic aerogel being a pyrolysate of said gel in the form of a porous carbon monolith comprising the product of the pyrolysis of said at least one water-soluble cationic polyelectrolyte P, said organic aerogel exhibiting a specific thermal conductivity of between 10 and 40 mW·m−1·K−1 at atmospheric pressure.
Abstract:
A crosslinked rubber composition, process for preparing same, and a flexible component based on at least one room-temperature vulcanizing “RTV” silicone elastomer and including at least one phase change material (PCM) is provided. The flexible element includes at least one elastomer layer capable of storing thermal energy and of releasing it which includes the crosslinked rubber composition. Also provided is a thermal control or regulating system incorporating the flexible element. The composition is such that the silicone elastomer has a viscosity measured at 23° C. according to the ISO 3219 standard which is less than or equal to 5000 mPa.s. The silicone elastomer inlcudes two components A and B and is crosslinked by polyaddition or polycondensation, and the composition includes the PCM, which is not encapsulated and is in the micronized state, in an amount of greater than 50 phr (phr: parts by weight per hundred parts per elastomer(s)).
Abstract:
Provided is a gelled carbon-based composition forming an organic polymeric monolithic gel capable of forming a porous carbon monolith by pyrolysis, a use thereof and a process for preparing this composition. A composition according to the invention is based on a resin derived at least partly from polyhydroxybenzene(s) R and formaldehyde(s) F, has a thermal conductivity of less than or equal to 40 mW·m−1·K−1, and includes at least one water-soluble cationic polyelectrolyte P. A process for preparing this composition comprises: a) polymerization, in an aqueous solvent, of the polyhydroxybenzene(s) and formaldehyde(s), in the presence of at least one cationic polyelectrolyte dissolved in this solvent and of a catalyst, in order to obtain a solution based on the resin, b) gelling of the solution in order to obtain a gel, and c) drying in order to obtain the organic polymeric monolithic gel.
Abstract:
A crosslinked rubber composition, process for preparing same, and a flexible component based on at least one room-temperature vulcanizing “RTV” silicone elastomer and including at least one phase change material (PCM) is provided. The flexible element includes at least one elastomer layer capable of storing thermal energy and of releasing it which includes the crosslinked rubber composition. Also provided is a thermal control or regulating system incorporating the flexible element. The composition is such that the silicone elastomer has a viscosity measured at 23° C. according to the ISO 3219 standard which is less than or equal to 5000 mPa·s. The silicone elastomer includes two components A and B and is crosslinked by polyaddition or polycondensation, and the composition includes the PCM, which is not encapsulated and is in the micronized state, in an amount of greater than 50 phr (phr: parts by weight per hundred parts per elastomer(s)).
Abstract:
The present invention relates to a crosslinked rubber composition based on at least one elastomer of ethylene-propylene-diene terpolymer type (EPDM) and on at least one phase-change material (PCM), to a process for preparing this composition and to a multilayer pipe incorporating it. This composition includes at least 100 phr (phr: parts by weight per one hundred parts of elastomer(s)) of at least one phase-change material (PCM), and it is such that said at least one PCM is dispersed in the crosslinked composition and is provided with protection means that are capable of preventing its dispersion therein at a temperature above its melting point, which composition has a breaking strength of greater than 3 MPa and/or an elongation at break of greater than 100%, these properties being measured at 23° C. according to standard ASTM D 412.
Abstract:
The present invention relates to a crosslinked rubber composition based on at least one elastomer of ethylene-propylene-diene terpolymer type (EPDM) and on at least one phase-change material (PCM), to a process for preparing this composition and to a multilayer pipe incorporating it. This composition includes at least 100 phr (phr: parts by weight per one hundred parts of elastomer(s)) of at least one phase-change material (PCM), and it is such that said at least one PCM is dispersed in the crosslinked composition and is provided with protection means that are capable of preventing its dispersion therein at a temperature above its melting point, which composition has a breaking strength of greater than 3 MPa and/or an elongation at break of greater than 100%, these properties being measured at 23° C. according to standard ASTM D 412.