Abstract:
A selective hydrogenation catalyst comprising an active phase based on nickel and molybdenum, and a porous support consisting of alumina and/or nickel aluminate, characterized in that the molar ratio between the nickel and the molybdenum is greater than 2.5 mol/mol and less than 3.0 mol/mol.
Abstract:
The invention relates to a process for the rejuvenation of an at least partially spent catalyst resulting from a hydrotreating process, said at least partially spent catalyst resulting from a fresh catalyst comprising a metal from group VIII, a metal from group VIb, an oxide support, and optionally phosphorus, said at least partially spent catalyst additionally comprising carbon in a content of between 2% and 20% by weight, with respect to the total weight of the at least partially spent catalyst, and sulfur in a content of between 1% and 8% by weight, with respect to the total weight of the at least partially spent catalyst, said process comprising the following stages: a) said spent catalyst is brought into contact with an impregnation solution containing a compound comprising a metal from group VIb, b) a drying stage is carried out at a temperature of less than 200° C.
Abstract:
The present invention relates to a hydrotreating catalyst comprising at least one group VIB metal, at least one group VIII metal and an alumina support having a gamma alumina content greater than 50% by weight and less than 100% by weight with respect to the weight of the support, said support having a specific surface area comprised between 25 and 150 m2/g.
Abstract:
The present invention describes a novel configuration for simulated counter-current para-xylene production units, constituted by two adsorbers, characterized in that the volume occupied by the solid adsorbent is reduced by at least 8% compared with the volume of solid adsorbent contained in the adsorbers of a prior art unit. This novel configuration can be used to minimize the quantity of solid adsorbent necessary to produce a given quantity of para-xylene.
Abstract:
A method for selective hydrogenation of gasoline including polyunsaturated compounds and light sulfur compounds wherein the gasoline and hydrogen is brought into contact with a catalyst containing a group VIB metal, a group VIII metal and a mesoporous and macroporous alumina substrate having a bimodal mesopore distribution and wherein the volume of mesopores having a diameter greater than or equal to 2 nm and less than 18 nm is 10 to 30% by volume of the total pore volume of the substrate, the volume of mesopores having a diameter greater than or equal to 18 nm and less than 50 nm is 30 to 50% by volume of the total pore volume of the substrate; the volume of macropores having a diameter greater than or equal to 50 nm and less than 8000 nm is 30 to 50% by volume of the total pore volume of the substrate.
Abstract:
A hydrotreating catalyst comprising an active phase containing at least one group VIB metal and at least one group VIII metal, and a porous support containing alumina and at least one spinel MAl2O4 where M is chosen from nickel and cobalt, characterized in that:
the molar ratio (r1) between said group VIII metal and said group VIB metal of the active phase is between 1.0 and 3.0 mol/mol; the molar ratio (r2) between said metal M of the porous support and said group VIII metal of the active phase is between 0.3 and 0.7 mol/mol; the molar ratio (r3) between the sum of the contents of the metal M and of the group VIII metal relative to the content of group VIB metal is between 2.2 and 3.0 mol/mol.
Abstract:
A selective hydrogenation catalyst contains an active phase having a group VIB metal and a group VIII metal, and a porous support containing alumina. The group VIB metal content is between 1 and 18% by weight relative to total weight of the catalyst, and the group VIII metal content of the active phase, measured in oxide form, is between 1 and 20% by weight relative to total weight of the catalyst. The molar ratio between the group VIII metal and the group VIB metal is between 1.0 and 3.0 mol/mol. The group VIII metal is homogeneously distributed in the porous support with a distribution coefficient R of between 0.8 and 1.2, measured using a Castaing microprobe, and the group VIB metal is distributed at the periphery of the porous support with a distribution coefficient R of less than 0.8.
Abstract:
The invention describes a mass for scavenging mercaptans which is particularly suitable for the treatment of olefinic gasoline cuts containing sulfur such as gasolines resulting from catalytic cracking. The scavenging mass comprises an active phase based on group VIII, IB or IIB metal particles which is prepared by a step of bringing a porous support into contact with a metal salt of said group VIII, IB or IIB metal and a step heating the resulting mixture to a temperature above the melting point of said metal salt. The invention also relates to a process for using said scavenging mass for the adsorption of mercaptans.
Abstract:
A process for the treatment of a gasoline containing sulfur compounds and olefins includes the following stages: a) hydrodesulfurization in the presence of a catalyst having an oxide support and an active phase having a metal from group VIB and a metal from group VIII, b) hydrodesulfurization at a higher temperature than that of stage a) and in the presence of a catalyst having an oxide support and an active phase with at least one metal from group VIII, c) separation of H2S formed, d) hydrodesulfurization at a low hydrogen/feedstock ratio and in the presence of a hydrodesulfurization catalyst having an oxide support and an active phase having a metal from group VIB and a metal from group VIII or an active phase with at least one metal from group VIII, and e) further separation of H2S formed.
Abstract:
The invention describes a process for the capture of organometallic impurities in a hydrocarbon feedstock of gasoline type containing olefins and sulfur, in which a capture body is brought into contact with the feedstock to be treated and a stream of hydrogen, said capture body comprises an active phase based on nickel oxide particles with a size of less than or equal to 15 nm, said active phase not comprising other metal elements of Group VIb or Group VIII, which are deposited on a porous support chosen from the group consisting of aluminas, silica, silicas/aluminas, or also titanium or magnesium oxides, used alone or as a mixture with alumina or silica/alumina.