Abstract:
Example embodiments relate to active-passive waveguide photonic systems. An example embodiment includes a monolithic integrated active/passive waveguide photonic system. The system includes a substrate having positioned thereon at least one active waveguide and at least one passive waveguide. The at least one active waveguide and the at least one passive waveguide are monolithically integrated and are arranged for evanescent wave coupling between the waveguides. The at least one active waveguide and the at least one passive waveguide are positioned so that at least a portion of each waveguide does not overlap the other waveguide, both in a height direction and in a lateral direction with respect to the substrate.
Abstract:
A III-V semiconductor waveguide nanoridge structure having a narrow supporting base with a freestanding wider body portion on top, is disclosed. In one aspect, the III-V waveguide includes a PIN diode. The waveguide comprises a III-V semiconductor waveguide core formed in the freestanding wider body portion; at least one heterojunction incorporated in the III-V semiconductor waveguide core; a bottom doped region of a first polarity positioned at a bottom of the narrow supporting base, forming a lower contact; and an upper doped region of a second polarity, forming an upper contact. The upper contact is positioned in at least one side wall of the freestanding wider body portion.
Abstract:
An electrically-operated semiconductor laser device and method for forming the laser device are provided. The laser device includes a fin structure to which a waveguide is optically coupled. The waveguide is optically coupled to passive waveguides at either end thereof. The fin structure includes an array of fin elements, each fin element comprising Group III-V materials.
Abstract:
Semiconductor photonics devices for coupling radiation to a semiconductor waveguide are described. An example photonics device comprises a semiconductor-on-insulator substrate comprising a semiconductor substrate, a buried oxide layer positioned on top of the semiconductor substrate, and the semiconductor waveguide on top of the buried oxide layer to which radiation is to be coupled. The example device also comprises a grating coupler positioned on top of the buried oxide layer and configured for coupling incident radiation to the semiconductor waveguide. The semiconductor substrate has a recessed portion at the backside of the semiconductor substrate for receiving incident radiation to be coupled to the semiconductor waveguide via the backside of the semiconductor substrate and the grating coupler.
Abstract:
The present disclosure relates to an optical alignment compensation system for a gas detection system, in particular, to an integrated alignment compensation system for an open-path gas sensing system. The optical alignment compensation system of the disclosure is able to compensate for unwanted drifts of a retroreflector. The optical alignment system comprises an array of transceiver pairs, wherein each transceiver pair is configured to transmit and receive light with an optical spectrum in an absorption region of a gas to be detected. Further, it comprises a retroreflector arranged at a nominal position and configured to reflect the light. Further, it comprises an optical element arranged and configured to direct the light from at least one of the transceiver pairs along an optical path through the gas to the retroreflector, to receive the light reflected by the retroreflector along the optical path, and to direct the reflected light to the respective transceiver pair. Further, it comprises a control unit configured to select one of the transceiver pairs for transmitting and receiving the light, wherein the control unit is configured to select the transceiver pair that receives the reflected light with the highest signal response.
Abstract:
A method is provided for fabricating an avalanche photodiode (APD) device, in particular, a separate absorption charge multiplication (SACM) APD device. The method includes forming a first contact region and a second contact region in a semiconductor layer. Further, the method includes forming a first mask layer above at least a first contact region of the semiconductor layer adjacent to the first contact region, and forming a second mask layer above and laterally overlapping the first mask layer. Thereby, a mask window is defined by the first mask layer and the second mask layer, and the first mask layer and/or the second mask layer are formed above a second contact region of the semiconductor layer adjacent to the second contact region. Further, the method includes forming a charge region in the semiconductor layer through the mask window, wherein the charge region is formed between the first contact region and the second contact region, and comprises forming an absorption region on the first contact region using the first mask layer. An APD fabricated by the disclosed method is also provided.
Abstract:
A silicon-based photonic chip is provided that includes an interface for optically coupling the photonic chip to an optical fiber or an optical fiber assembly. The interface includes: a single-mode waveguide configured to guide light and to provide a first light beam; a first optical element configured to expand the light beam in a first direction in-plane of the photonic chip, thereby providing an expanded light beam; and a second optical element configured to deflect and to further expand the expanded light beam in a second direction, thereby providing an output light beam from the photonic chip. Also provided are methods for fabricating such a photonic chip.
Abstract:
An avalanche photodiode (APD) device, in particular, a lateral separate absorption charge multiplication (SACM) APD device, and a method for its fabrication is provided. The APD device comprises a first contact region and a second contact region formed in a semiconductor layer. Further, the APD device comprises an absorption region formed on the semiconductor layer, wherein the absorption region is at least partly formed on a first region of the semiconductor layer, wherein the first region is arranged between the first contact region and the second contact region. The APD device further includes a charge region formed in the semiconductor layer between the first region and the second contact region, and an amplification region formed in the semiconductor layer between the charge region and the second contact region. At least the absorption region is curved on the semiconductor layer.
Abstract:
Example embodiments relate to an electro-optical device that includes a vertical p-i-n diode waveguide. The electro-optical device includes a waveguide portion adapted for propagating a multimode wave, the waveguide portion including an intrinsic semiconductor region of the vertical p-i-n diode, a first contact and a second contact for electrically contacting a first electrode and a second electrode of the vertical p-i-n diode. The device also includes an input section for coupling radiation into the waveguide portion and an output section for coupling radiation out of the waveguide portion. The input section, the output section, and the waveguide portion are configured to support a multimode interference pattern for the multimode wave with an optical field with a lateral inhomogeneous spatial distribution in the waveguide portion including regions with higher optical field intensity and regions with lower optical field intensity. The second contact physically contacts the second electrode.
Abstract:
The present disclosure relates to a method for integrating a sub-micron III-V waveguide laser on a semiconductor photonics platform as well as to a corresponding device/system. The method comprises providing on a semiconductor substrate an electrically insulating layer, etching a trench having a width in the range between 50 nm and 800 nm through the electrically insulating layer, thereby locally exposing the silicon substrate, providing a III-V layer stack in the trench by local epitaxial growth to form a channel waveguide, and providing a light confinement element for confining radiation in the local-epitaxial-grown channel waveguide.