Abstract:
A passivation layer structure of a semiconductor device is provided, which includes a passivation layer formed of halogen-doped aluminum oxide and disposed on a semiconductor layer on a substrate, in which the semiconductor layer includes indium gallium zinc oxide (IGZO) or nitride-based III-V compounds. A method for forming the passivation layer structure of a semiconductor device is also disclosed.
Abstract:
An image sensor and a manufacturing method thereof are provided. The image sensor includes a substrate, a patterned electrode layer, a pixel isolation structure and a patterned photo-electric conversion layer. The patterned electrode layer is disposed on the substrate and includes a plurality of electrode blocks separated from one another. The pixel isolation structure is disposed on the substrate and includes a metal halide. The patterned photo-electric conversion layer is disposed on the electrode blocks to form a plurality of photo-electric conversion blocks corresponding to the electrode blocks. The photo-electric conversion blocks include a perovskite material. The photo-electric conversion blocks are separated from one another by the pixel isolation structure.
Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.
Abstract:
A method for forming doping regions is disclosed, including providing a substrate, forming a first-type doping material on the substrate and forming a second-type doping material on the substrate, wherein the first-type doping material is separated from the second-type doping material by a gap; forming a covering layer to cover the substrate, the first-type doping material and the second-type doping material; and performing a thermal diffusion process to diffuse the first-type doping material and the second-type doping material into the substrate.