摘要:
Embodiments relate to surface treating a substrate, spraying precursor onto the substrate using supercritical carrier fluid, and post-treating the substrate sprayed with the precursor to form a layer with nanometer thickness of material on the substrate. A spraying assembly for spraying the precursor includes one or more spraying modules and one or more radical injectors at one or more sides of the spraying module. A differential spread mechanism is provided between the spraying module and the radical injectors to inject spread gas that isolates the sprayed precursor and radicals generated by the radical injectors. As relative movement between the substrate and the spraying assembly is made, portions of the substrate is exposed to first radicals, sprayed with precursors either one of the spraying modules or both spraying modules using supercritical carrier fluid, and then exposed to second radicals again.
摘要:
A method for forming a metal oxide film, the method including: forming a source solution containing metal into a mist, heating a substrate, supplying the source solution formed into a mist onto a first main surface of the substrate through a first supply path, and supplying hydrogen peroxide through a second path different from the first supply path onto the first main surface of the substrate, where the method further includes, in the following order, preliminarily preparing data showing a relationship among a molar ratio of an amount of the hydrogen peroxide to an amount of the zinc in the source solution, a carrier concentration of the metal oxide film, and a mobility of the metal oxide film, determining an amount of the hydrogen peroxide supplied with the data, and supplying the determined amount of the hydrogen peroxide through the second path onto the first main surface of the substrate.
摘要:
Methods and apparatuses for a deposition system are provided to deposit a thin coating layer on flat substrates, such as semiconductors or panels. In an embodiment, liquid supplied rollers accepting liquid media provide liquid chemicals to the substrates for coating the substrates. The liquid delivery system can control the flow and the pressure of the liquid to achieve optimum process condition with minimum excess waste. In another embodiment, rollers with non-uniform distribution of liquid media provide a non-uniform thickness profile on the substrates, which can be used to compensate for the non-uniformity of subsequent processes.
摘要:
A thermocatalytically active titanium dioxide coating has a high BET surface area. With this coating, a catalytic effect can be achieved with only moderately increased temperatures (>200 DEG C.).
摘要:
A substrate is located within a deposition chamber, the substrate defining a substrate plane. A liquid precursor is misted by ultrasonic or venturi apparatus, to produce a colloidal mist. The mist is generated, allowed to settle in a buffer chamber, filtered through a system up to 0.01 micron, and flowed into the deposition chamber between the substrate and barrier plate to deposit a liquid layer on the substrate. The liquid is dried to form a thin film of solid material on the substrate, which is then incorporated into an electrical component of an integrated circuit.
摘要:
Embodiments relate to surface treating a substrate, spraying precursor onto the substrate using supercritical carrier fluid, and post-treating the substrate sprayed with the precursor to form a layer with nanometer thickness of material on the substrate. A spraying assembly for spraying the precursor includes one or more spraying modules and one or more radical injectors at one or more sides of the spraying module. A differential spread mechanism is provided between the spraying module and the radical injectors to inject spread gas that isolates the sprayed precursor and radicals generated by the radical injectors. As relative movement between the substrate and the spraying assembly is made, portions of the substrate is exposed to first radicals, sprayed with precursors either one of the spraying modules or both spraying modules using supercritical carrier fluid, and then exposed to second radicals again.
摘要:
The present invention relates to a zeolite coating preparation assembly (1) and operation method wherein zeolite adsorbents are coated by crystallization process on various surfaces heated by induction. The objective of the present invention is to provide a zeolite coating preparation assembly (1) and operation method; by which time saving is achieved owing to heating by induction, material saving is achieved since large heating resistances and complicated reactors are not used; and which is thus more economical; and wherein thicker and more stable coatings with high diffusion coefficients are prepared by using a more practical reaction system in a shorter period of time in comparison to the known methods, and wherein mass production is enabled.
摘要:
This invention relates to compounds and compositions used to prepare semiconductor and optoelectronic materials and devices. This invention provides a range of compounds, compositions, materials and methods directed ultimately toward photovoltaic applications, as well as devices and systems for energy conversion, including solar cells. In particular, this invention relates to molecular precursor compounds, precursor materials and methods for preparing photovoltaic layers and thin films thereof.
摘要:
A passivation layer structure of a semiconductor device is provided, which includes a passivation layer formed of halogen-doped aluminum oxide and disposed on a semiconductor layer on a substrate, in which the semiconductor layer includes indium gallium zinc oxide (IGZO) or nitride-based III-V compounds. A method for forming the passivation layer structure of a semiconductor device is also disclosed.
摘要:
A pre-plating solution for making a printed circuit board includes carbon nanotubes of 0.01-3 wt %, a surfactant of 0.01-4 wt %, an alkaline substance of 0.01-1 wt % and a solvent. A method for preparing a pre-plating solution comprising the steps of: providing a plurality of carbon nanotubes; purifying the carbon nanotubes; treating the purified carbon nanotubes with an acid; mixing the treated carbon nanotubes, an alkaline substance and a solvent to form suspension; and adding surfactant into suspension.