Abstract:
A liquid crystal display panel includes a substrate, a thin film transistor array, a circuit, and a dummy circuit. One surface of the substrate is divided into a display region and a wiring region. The thin film transistor array is formed on the display region. The circuit and the dummy circuit are formed on the wiring region, the dummy circuit is adjacent to the circuit, and the circuit and the dummy circuit protrude from the substrate.
Abstract:
A touch structure includes a conductive glass unit and a conductive film unit disposed on one side of the conductive glass unit. The conductive glass unit includes a glass substrate and a first patterned electrode layer. The glass substrate has a first surface and a second surface opposite to the first surface. The first surface has a first roughness, the second surface has a second roughness, and the first roughness is larger than the second roughness. The first patterned electrode layer is disposed on the second surface. The conductive film unit includes a transparent film and a second patterned electrode layer disposed on the transparent film.
Abstract:
An embodiment of the invention provides a curved touch display device including: a display panel having a display area and a non-display area; a touch panel disposed on the display panel, wherein the touch panel has a touch area and a peripheral area, and a light shielding layer is disposed in the peripheral area to shield the non-display area; a curved light-transmissive cover plate disposed on the touch panel and having a curved surface; and an optically clear adhesive layer disposed between the light shielding layer of the touch panel and the curved light-transmissive cover plate.
Abstract:
The present invention relates to a method for forming a conductive line, and a device comprising the conductive line. The method for forming a conductive line comprises: (A) providing a metal oxide composition which comprises a metal oxide, and a reducing agent; (B) applying the metal oxide composition on a substrate, and curing the metal oxide composition to form an metal oxide layer; and (C) irradiating the metal oxide layer by a light source to occur a chemical reduction reaction between the metal oxide and the reducing agent in the metal oxide layer to proceed to thereby form a conductive line.
Abstract:
A display device includes a display panel, a vibrator and an adhesive layer. The vibrator is disposed on a surface of the display panel. The adhesive layer is disposed between the display panel and the vibrator, and a part of the adhesive layer contacts the display panel and another part of the adhesive layer contacts the vibrator.
Abstract:
A method for fabricating a peripheral wiring unit of a touch panel includes the following steps: (a) forming a transparent conductive layer on a substrate, the substrate including a peripheral region and a window region surrounded by the peripheral region, and forming a photosensitive conductive layer on the peripheral region of the substrate, such that the photosensitive conductive layer at least partially overlies the transparent conductive layer; (b) exposing the photosensitive conductive layer by using a photomask; and (c) developing the exposed photosensitive conductive layer to form a peripheral wiring unit on the peripheral region of the substrate.
Abstract:
A method for fabricating a peripheral wiring unit of a touch panel includes the following steps: (a) forming a transparent conductive layer on a substrate, the substrate including a peripheral region and a window region surrounded by the peripheral region, and forming a photosensitive conductive layer on the peripheral region of the substrate, such that the photosensitive conductive layer at least partially overlies the transparent conductive layer; (b) exposing the photosensitive conductive layer by using a photomask; and (c) developing the exposed photosensitive conductive layer to form a peripheral wiring unit on the peripheral region of the substrate.
Abstract:
A display device includes a display panel, a vibrator and an adhesive layer. The vibrator is disposed on a surface of the display panel. The adhesive layer is disposed between the display panel and the vibrator, and a part of the adhesive layer contacts the display panel and another part of the adhesive layer contacts the vibrator.
Abstract:
A touch panel is provided. The touch panel includes a substrate having a touch area and a peripheral area adjacent to the touch area. A transparent conductive layer is disposed on the substrate, the transparent conductive layer includes a touch-sensing portion and a wiring portion, wherein the touch-sensing portion is electrically connected to the wiring portion, and wherein the touch-sensing portion is disposed corresponding to the touch area and the wiring portion is disposed corresponding to the peripheral area. A metal layer is disposed on the wiring portion of the transparent conductive layer and corresponding to the peripheral area. An insulating layer is disposed on the metal layer and corresponding to the peripheral area. A touch display device including the touch panel is also provided.
Abstract:
A touch device and a manufacturing method thereof are provided. The touch device includes a base structure and a touch structure. The touch structure includes a touch electrode pattern and a metal trace. The touch electrode pattern is on the base structure. The metal trace is on an edge of the touch electrode pattern. A thickness of the metal trace is 1 μm-100 μm. A roughness of the metal trace is 0.1 μm-90 μm.