Abstract:
Steps are taken to ensure that the bulk dielectric layer exhibits a crystalline phase before the deposition of a second electrode layer. The crystalline phase of the bulk dielectric layer facilitates the crystallization of the second electrode layer at lower temperature during a subsequent anneal treatment. In some embodiments, one or more interface layers are inserted between the bulk dielectric layer and the first electrode layer and/or the second electrode layer. The interface layers may act as an oxygen sink, facilitate the crystallization of the electrode layer at lower temperature during a subsequent anneal treatment, or provide barriers to leakage current through the film stack.
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The semiconductor layer of the selector element can include a silicon carbide/silicon nitride nanolaminate stack. The semiconductor layer of the selector element can include a silicon carbon nitride/silicon nitride nanolaminate stack. Conductive materials of the MSM may include tungsten, titanium nitride, carbon, or a combination thereof.
Abstract:
Methods of forming layers can comprise defining a plurality of discrete site-isolated regions (SIRs) on a substrate, forming a first layer on one of the discrete SIRs, forming a second layer on the first layer, measuring a lattice parameter or an electrical property of the second layer, The process parameters for the formation of the first layer are varied in a combinatorial manner between different discrete SIRs to explore the possible layers that can result in suitable lattice matching for second layer of a desired crystalline structure.
Abstract:
Selector elements that can be suitable for nonvolatile memory device applications are disclosed. The selector element can have low leakage currents at low voltages to reduce sneak current paths for non selected devices, and higher leakage currents at higher voltages to minimize voltage drops during device switching. The selector element can be based on multilayer film stacks (e.g. metal-semiconductor-metal (MSM) stacks). The semiconductor layer of the selector element can include a silicon carbide/silicon nitride nanolaminate stack. The semiconductor layer of the selector element can include a silicon carbon nitride/silicon nitride nanolaminate stack. Conductive materials of the MSM may include tungsten, titanium nitride, carbon, or a combination thereof.
Abstract:
A capacitor stack includes a base bottom electrode layer including a conductive metal nitride material. A second bottom electrode layer is formed above the first bottom electrode layer. The second bottom electrode layer includes a conductive metal oxide material, wherein the crystal structure of the conductive metal oxide material promotes a desired high-k crystal phase of a subsequently deposited dielectric layer. A dielectric layer is formed above the second bottom electrode layer. A molybdenum nitride or a molybdenum oxy-nitride layer is formed above the dielectric layer. A fourth top electrode layer is formed above the third top electrode layer. The base top electrode layer includes a conductive metal nitride material.
Abstract:
Methods of forming layers can comprise defining a plurality of discrete site-isolated regions (SIRs) on a substrate, forming a first layer on one of the discrete SIRs, forming a second layer on the first layer, measuring a lattice parameter or an electrical property of the second layer, The process parameters for the formation of the first layer are varied in a combinatorial manner between different discrete SIRs to explore the possible layers that can result in suitable lattice matching for second layer of a desired crystalline structure.
Abstract:
Methods of forming layers can comprise defining a plurality of discrete site-isolated regions (SIRs) on a substrate, forming a first layer on one of the discrete SIRs, forming a second layer on the first layer, measuring a lattice parameter or an electrical property of the second layer, The process parameters for the formation of the first layer are varied in a combinatorial manner between different discrete SIRs to explore the possible layers that can result in suitable lattice matching for second layer of a desired crystalline structure.
Abstract:
Methods of forming layers can comprise defining a plurality of discrete site-isolated regions (SIRs) on a substrate, forming a first layer on one of the discrete SIRs, forming a second layer on the first layer, measuring a lattice parameter or an electrical property of the second layer, The process parameters for the formation of the first layer are varied in a combinatorial manner between different discrete SIRs to explore the possible layers that can result in suitable lattice matching for second layer of a desired crystalline structure.