Abstract:
A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.
Abstract:
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time and supports DMA functionality allowing for parallel processing message-passing.
Abstract:
An apparatus for detecting hard errors in a circuit includes a storage device and a processing circuit. The storage has stored therein test data and normal data. The processing circuit includes combinational logic in series with at least one set of input latches and at least one set of output latches. The apparatus includes a test control module configured to control the processing circuit to halt a flow of normal data through the processing circuit and run the test data through the processing circuit while subjecting the processing circuit to a stress condition.
Abstract:
A multiprocessor system supports multiple concurrent modes of speculative execution. Speculation identification numbers (IDs) are allocated to speculative threads from a pool of available numbers. The pool is divided into domains, with each domain being assigned to a mode of speculation. Modes of speculation include TM, TLS, and rollback. Allocation of the IDs is carried out with respect to a central state table and using hardware pointers. The IDs are used for writing different versions of speculative results in different ways of a set in a cache memory.
Abstract:
Methods, systems and computer program products are disclosed for measuring a performance of a program running on a processing unit of a processing system. In one embodiment, the method comprises informing a logic unit of each instruction in the program that is executed by the processing unit, assigning a weight to each instruction, assigning the instructions to a plurality of groups, and analyzing the plurality of groups to measure one or more metrics. In one embodiment, each instruction includes an operating code portion, and the assigning includes assigning the instructions to the groups based on the operating code portions of the instructions. In an embodiment, each type of instruction is assigned to a respective one of the plurality of groups. These groups may be combined into a plurality of sets of the groups.
Abstract:
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.
Abstract:
Methods, systems and computer program products are disclosed for measuring a performance of a program running on a processing unit of a processing system. In one embodiment, the method comprises informing a logic unit of each instruction in the program that is executed by the processing unit, assigning a weight to each instruction, assigning the instructions to a plurality of groups, and analyzing the plurality of groups to measure one or more metrics. In one embodiment, each instruction includes an operating code portion, and the assigning includes assigning the instructions to the groups based on the operating code portions of the instructions. In an embodiment, each type of instruction is assigned to a respective one of the plurality of groups. These groups may be combined into a plurality of sets of the groups.
Abstract:
Methods, systems and computer program products are disclosed for measuring a performance of a program running on a processing unit of a processing system. In one embodiment, the method comprises informing a logic unit of each instruction in the program that is executed by the processing unit, assigning a weight to each instruction, assigning the instructions to a plurality of groups, and analyzing the plurality of groups to measure one or more metrics. In one embodiment, each instruction includes an operating code portion, and the assigning includes assigning the instructions to the groups based on the operating code portions of the instructions. In an embodiment, each type of instruction is assigned to a respective one of the plurality of groups. These groups may be combined into a plurality of sets of the groups.
Abstract:
Methods, systems and computer program products are disclosed for measuring a performance of a program running on a processing unit of a processing system. In one embodiment, the method comprises informing a logic unit of each instruction in the program that is executed by the processing unit, assigning a weight to each instruction, assigning the instructions to a plurality of groups, and analyzing the plurality of groups to measure one or more metrics. In one embodiment, each instruction includes an operating code portion, and the assigning includes assigning the instructions to the groups based on the operating code portions of the instructions. In an embodiment, each type of instruction is assigned to a respective one of the plurality of groups. These groups may be combined into a plurality of sets of the groups.
Abstract:
A method and system are disclosed for providing combined error code protection and subgroup parity protection for a given group of n bits. The method comprises the steps of identifying a number, m, of redundant bits for said error protection; and constructing a matrix P, wherein multiplying said given group of n bits with P produces m redundant error correction code (ECC) protection bits, and two columns of P provide parity protection for subgroups of said given group of n bits. In the preferred embodiment of the invention, the matrix P is constructed by generating permutations of m bit wide vectors with three or more, but an odd number of, elements with value one and the other elements with value zero; and assigning said vectors to rows of the matrix P.