Abstract:
A method for forming high-density self-aligned contacts and interconnect structures in a semiconductor device. A dielectric layer thick enough to contain both interconnect and contact structures is formed on a substrate. A patterned hardmask is formed on the dielectric layer to define both the interconnect and contact structures. The openings for interconnect features are first formed by partially etching the dielectric layer selective to the hardmask. A second mask (e.g., a resist) is used to define the contact openings, and the dielectric layer is etched through the second mask, also selective to the hardmask, to expose the diffusion regions to be contacted. The patterned hardmask is used to help define the contact openings. Conductive material is then deposited in the openings which results in contacts and interconnects that are self-aligned. By first forming the openings for both interconnect and contacts, savings in processing steps may be obtained.
Abstract:
An apparatus for plasma processing of a wafer includes an annular structure including a magnet, where the structure is concentric with the wafer holder; the magnet generates a magnetic field for deflecting charged particles incident on the structure, thereby preventing damage to the structure by those particles. Accordingly, the structure may be of a material susceptible to erosion during the plasma processing, so that the magnetic field reduces that erosion. The cost of consumable parts in the apparatus is thus reduced. The annular structure may be characterized as a ring having a groove formed therein, with the magnet disposed in the groove. The magnet may be either a permanent magnet or an electromagnet.
Abstract:
A DRAM array in an SOI wafer having a uniform BOX layer extending throughout the array eliminates the collar oxide step in processing; connects the buried plates with an implant that, in turn, is connected to a conductive plug extending through the device layer and the box that is biased at ground; while the pass transistors are planar NFETs having floating bodies that have a leakage discharge path to ground through a grounded bitline.
Abstract:
A method for forming high-density self-aligned contacts and interconnect structures in a semiconductor device. A dielectric layer thick enough to contain both interconnect and contact structures is formed on a substrate. A patterned hardmask is formed on the dielectric layer to define both the interconnect and contact structures. The openings for interconnect features are first formed by partially etching the dielectric layer selective to the hardmask. A second mask (e.g., a resist) is used to define the contact openings, and the dielectric layer is etched through the second mask, also selective to the hardmask, to expose the diffusion regions to be contacted. The patterned hardmask is used to help define the contact openings. Conductive material is then deposited in the openings which results in contacts and interconnects that are self-aligned. By first forming the openings for both interconnect and contacts, savings in processing steps may be obtained.
Abstract:
A structure and method for an insulator layer having carbon-graded layers above a substrate is disclosed, wherein the concentration of carbon increases in each successive carbon-graded layer above the substrate. The insulator comprises a low-k dielectric having a dielectric constant less than 3.3. The carbon-graded layer increases adhesion between the substrate and the insulator and between the insulator and the conductor layer. The structure may also include stabilization interfaces between the carbon-graded layers. More specifically, the carbon-graded layers include a first layer adjacent the substrate having a carbon content between about 5% and 20%, a second layer above the first layer having a carbon content between about 10% and 30%, and a third layer above the second layer having a carbon content between about 20% and 40%.