Abstract:
A process for forming a damascene structure includes depositing a bilayer comprising a first dielectric layer and a second dielectric layer onto a substrate, wherein the first layer has a dielectric constant higher than the second layer, and wherein the second layer is selected from a low k dielectric material comprising Si, C, O and H. The multi-step damascene structure is patterned into the dielectric bilayer using highly selective anisotropic reactive ion etching. Photoresist, polymers and post etch residues are removed from the substrate using a plasma ashing process without damaging the underlying dielectric layers.
Abstract:
A tantalum-based liner for copper metallurgy is selectively removed by chemical-mechanical planarization (CMP) in an acidic slurry of an oxidizer such as hydrogen peroxide, deionized water, a corrosion inhibitor such as BTA, and a surfactant such as Duponol SP, resulting in a high removal rate of the liner without appreciable removal of the exposed copper and with minimal dishing.
Abstract:
A process of depositing a low k dielectric film on a substrate includes using plasma enhance chemical vapor deposition to deposit a hydrogenated oxidized silicon carbon film. The process includes flowing a precursor gas containing Si, C, H and an oxygen-providing gas into the PECVD chamber. The precursor gas and the oxygen-providing gas are substantially free from nitrogen. The oxygen-providing gas is selected from the group consisting of oxygen, carbon monoxide, carbon dioxide, ozone, water vapor and a combination of at least one of the foregoing.
Abstract:
A method is described for forming a low-k dielectric film, in particular, a pre-metal dielectric (PMD) on a semiconductor wafer which has good gap-filling characteristics. The method uses a thermal sub-atmospheric CVD process that includes a carbon-containing organometallic precusor such as TMCTS or OMCTS, an ozone-containing gas, and a source of dopants for gettering alkali elements and for lowering the reflow temperature of the dielectric while attaining the desired low-k and gap-filling properties of the dielectric film. Phosphorous is a preferred dopant for gettering alkali elements such as sodium. Additional dopants for lowering the reflow temperature include, but are not limited to boron, germanium, arsenic, fluorine or combinations thereof.
Abstract:
This invention relates to the manufacture of dual damascene interconnect structures in integrated circuit devices. Specifically, a method is disclosed for forming a single or dual damascene structure in a low-k dielectric thin film utilizing a planarizing material and a diffusion barrier material. In a preferred dual damascene embodiment of this method, the vias are formed first in the dielectric material, then the planarizing material is deposited in the vias and on the dielectric material, and the barrier material is deposited on the planarizing material. The trenches are then formed lithographically in the imaging material, etched through the barrier material into the planarizing material, and the trench pattern is transferred to the dielectric material. During and following the course of these etch steps, the imaging, barrier and planarizing materials are removed. The resultant dual damascene structure may then be metallized. With this method, the problem of photoresist poisoning by the interlevel dielectric material is alleviated.
Abstract:
An advanced back-end-of-line (BEOL) integration scheme for semiconductor devices using very low-k dielectric materials is disclosed. The disclosed method for forming a metal interconnect structure in a semiconductor integrated circuit device comprises forming the metal interconnects using a through-mask plating (TMP) process, and encapsulating the interconnects with a barrier layer by selectively depositing a barrier layer material using an electroless liner plating process or by non-selectively depositing a blanket insulator diffusion barrier layer using PVD or CVD techniques.
Abstract:
A method is described for forming a low-k dielectric film, in particular, a pre-metal dielectric (PMD) on a semiconductor wafer which has good gap-filling characteristics. The method uses a thermal sub-atmospheric CVD process that includes a carbon-containing organometallic precusor such as TMCTS or OMCTS, an ozone-containing gas, and a source of dopants for gettering alkali elements and for lowering the reflow temperature of the dielectric while attaining the desired low-k and gap-filling properties of the dielectric film. Phosphorous is a preferred dopant for gettering alkali elements such as sodium. Additional dopants for lowering the reflow temperature include, but are not limited to boron, germanium, arsenic, fluorine or combinations thereof.
Abstract:
A structure and method for an insulator layer having carbon-graded layers above a substrate is disclosed, wherein the concentration of carbon increases in each successive carbon-graded layer above the substrate. The insulator comprises a low-k dielectric having a dielectric constant less than 3.3. The carbon-graded layer increases adhesion between the substrate and the insulator and between the insulator and the conductor layer. The structure may also include stabilization interfaces between the carbon-graded layers. More specifically, the carbon-graded layers include a first layer adjacent the substrate having a carbon content between about 5% and 20%, a second layer above the first layer having a carbon content between about 10% and 30%, and a third layer above the second layer having a carbon content between about 20% and 40%.