摘要:
Disclosed herein is a touch panel including a base member; a transparent electrode formed on the base member and made of metal; and gloss reduction layers formed on the transparent electrode. The gloss reduction layers tinged with a dark color are formed on the transparent electrode made of metal to block metallic gloss, thereby making it possible to prevent the transparent electrode from being viewed and reduce reflectivity on the surface of the transparent electrode. In addition, the transparent electrode made of metal is patterned in a mesh shape, thereby making it possible to enhance light transmitivity of the touch panel.
摘要:
There is provided a fluoride phosphor composite including: fluoride phosphor core particles that may be expressed by the empirical formula AxMFy:Mn4+, wherein A may be at least one selected from the group consisting of Li, Na, K, Rb, and Cs, M may be at least one selected from the group consisting of Si, Ti, Zr, Hf, Ge, and Sn, the composition ratio (x) of A may satisfy 2≦x≦3, the composition ratio (y) of F may satisfy 4≦y≦7, each fluoride phosphor composite particle may be coated with a Mn-free fluoride coating. The Mn-free fluoride coating may have a thickness less than or equal to 35% of the size of each fluoride phosphor composite particle.
摘要:
There is provided a quantum dot wavelength converter including a quantum dot, which is optically stable without any change in an emission wavelength and improved in emission capability. The quantum dot wavelength converter includes: a wavelength converting part including a quantum dot wavelength-converting excitation light and generating a wavelength-converted light and a dispersive medium dispersing the quantum dot; and a sealer sealing the wavelength converting part.
摘要:
There is provided a method of manufacturing a light emitting device which includes preparing a light emitting element emitting excitation light and a substrate on which the light emitting element is disposed. A fluoride phosphor is provided to absorb excitation light emitted from the light emitting element to emit visible light, and is represented by Chemical Formula (1). The fluoride phosphor is disposed on at least one of the light emitting element and the substrate, wherein Chemical Formula (1): AxMFy:Mn4+ (wherein 2≦x≦3 and 4≦y≦7, A is at least one element selected from the group consisting of Li, Na, K, Rb, and Cs, and M is at least one element selected from the group consisting Si, Ti, Zr, Hf, Ge, and Sn).
摘要:
A method of manufacturing a fluoride phosphor, the method comprising: preparing a hydrofluoric (HF) solution in which a first source material and a fluoride containing Mn4+ are dissolved; and forming fluoride particles by introducing a second source material to the HF solution in each of a plurality of instances.
摘要:
A fluoride phosphor may include: a fluoride represented by a composition formula: AxMFy:Mnz4+, where A is at least one selected from among Li, Na, K, Rb, and Cs, M is at least one selected from among Si, Ti, Zr, Hf, Ge and Sn, a composition ratio (x) of A satisfies 2≦x≦3, a composition ratio (y) of F satisfies 4≦y≦7, and a composition ratio (z) of Mn satisfies 0
摘要:
There is provided a method of manufacturing a light emitting device which includes preparing a light emitting element emitting excitation light and a substrate on which the light emitting element is disposed. A fluoride phosphor is provided to absorb excitation light emitted from the light emitting element to emit visible light, and is represented by Chemical Formula (1). The fluoride phosphor is disposed on at least one of the light emitting element and the substrate, wherein Chemical Formula (1): AxMFy:Mn4+ (wherein 2≦x≦3 and 4≦y≦7, A is at least one element selected from the group consisting of Li, Na, K, Rb, and Cs, and M is at least one element selected from the group consisting Si, Ti, Zr, Hf, Ge, and Sn).