Abstract:
A method and system to provide user-level multithreading are disclosed. The method according to the present techniques comprises receiving programming instructions to execute one or more shared resource threads (shreds) via an instruction set architecture (ISA). One or more instruction pointers are configured via the ISA; and the one or more shreds are executed simultaneously with a microprocessor, wherein the microprocessor includes multiple instruction sequencers.
Abstract:
A processor includes a front end to receive an instruction. The processor also includes a core to execute the instruction. The core includes logic to execute a base function of the instruction to yield a result, generate a predicate value of a comparison of the result based upon a predication setting in the instruction, and set the predicate value in a register. The processor also includes a retirement unit to retire the instruction.
Abstract:
In one embodiment, a processor includes logic, responsive to a first instruction, to perform an operation on a first source operand and a second source operand associated with the first instruction and write a result of the operation to a destination location comprising a third source operand. The write may be a partial write of the destination location to maintain an unmodified portion of the third source operand. Other embodiments are described and claimed.
Abstract:
In one embodiment, the present invention includes a memory management unit (MMU) having entries to store virtual address to physical address translations, where each entry includes a location indicator to indicate whether a memory location for the corresponding entry is present in a local or remote memory. In this way, a common virtual memory space can be shared between the two memories, which may be separated by one or more non-coherent links. Other embodiments are described and claimed.
Abstract:
A method and system to provide user-level multithreading are disclosed. The method according to the present techniques comprises receiving programming instructions to execute one or more shared resource threads (shreds) via an instruction set architecture (ISA). One or more instruction pointers are configured via the ISA; and the one or more shreds are executed simultaneously with a microprocessor, wherein the microprocessor includes multiple instruction sequencers.
Abstract:
A method and system to provide user-level multithreading are disclosed. The method according to the present techniques comprises receiving programming instructions to execute one or more shared resource threads (shreds) via an instruction set architecture (ISA). One or more instruction pointers are configured via the ISA; and the one or more shreds are executed simultaneously with a microprocessor, wherein the microprocessor includes multiple instruction sequencers.
Abstract:
A processing device includes a store instruction identification unit to identify a pair of store instructions among a plurality of instructions in an instruction queue. The pair of store instructions include a first store instruction and a second store instruction. The first data of the first store instruction corresponds to a first memory region adjacent to a second memory region, and a second data of the second store instruction corresponds to the second memory region. The processing device to include a store instruction fusion unit to fuse the first store instruction with the second store instruction resulting in a fused store instruction.
Abstract:
In one embodiment, a processor includes a front end unit to fetch and decode an instruction. The front end unit includes a first random number generator to generate a random value responsive to a profileable event associated with the instruction. The processor further includes a profile logic to collect profile information associated with the instruction responsive to a sample signal, where the sample signal is based on at least a portion of the random value. Other embodiments are described and claimed.
Abstract:
A processor includes a front end to receive an instruction. The processor also includes a core to execute the instruction. The core includes logic to execute a base function of the instruction to yield a result, generate a predicate value of a comparison of the result based upon a predication setting in the instruction, and set the predicate value in a register. The processor also includes a retirement unit to retire the instruction.
Abstract:
In one embodiment, a processor includes logic, responsive to a first instruction, to perform an operation on a first source operand and a second source operand associated with the first instruction and write a result of the operation to a destination location comprising a third source operand. The write may be a partial write of the destination location to maintain an unmodified portion of the third source operand. Other embodiments are described and claimed.