Abstract:
Chucks for mounting and retaining semiconductor wafers during processing are described, particularly suited for wafer processing involving total immersion of the wafer-chuck structure in a liquid. Chuck structures are disclosed for preventing or hindering processing chemicals from contacting and contaminating large portions of the underside of the wafer undergoing processing, limiting such chemical contact to readily cleaned, relatively small annular regions on the periphery of the wafer. Embodiments include structures with supplemental gas flows on the underside of the wafer as well as the creation of gas/liquid meniscusci to prevent chemical penetration of the wafer's underside. Methods of processing semiconductor wafers employing such chucks are also described.
Abstract:
A spin deposition apparatus includes a deposition mask configured to be arranged proximate a target substrate. The deposition mask includes at least one fluid reservoir offset from a rotational axis of the deposition mask and configured to hold fluid for dispersal on a portion of a surface of the target substrate.
Abstract:
A substrate for processing in a heating system is disclosed. The substrate includes a bottom portion for absorbing heat from a radiating heat source, the bottom portion having a first region having a first emissivity and a second region having a second emissivity less than the first emissivity. The first region and the second region promote thermal uniformity of the substrate by compensating for thermal non-uniformity of the radiating heat source.
Abstract:
Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
Abstract:
A substrate for processing in a heating system is disclosed. The substrate includes a bottom portion for absorbing heat from a radiating heat source, the bottom portion having a first region having a first emissivity and a second region having a second emissivity less than the first emissivity. The first region and the second region promote thermal uniformity of the substrate by compensating for thermal non-uniformity of the radiating heat source.
Abstract:
Overlapping combinatorial processing can offer more processed regions, better particle performance and simpler process equipment. In overlapping combinatorial processing, one or more regions are processed in series with some degrees of overlapping between regions. In some embodiments, overlapping combinatorial processing can be used in conjunction with non-overlapping combinatorial processing and non-combinatorial processing to develop and investigate materials and processes for device processing and manufacturing.
Abstract:
In one implementation, a method for providing a fluid at a target pressure may include providing a fluid at a velocity to a supply line through a dispenser, measuring a pressure of the fluid flowing through the supply line, comparing the measured pressure with the target pressure, and adjusting the velocity based on the results of the comparison.
Abstract:
An apparatus and method for combinatorial non-contact wet processing of a liquid material may include a source of a liquid material, a first reaction cell, a second reaction cell, a first plurality of gas jets disposed within an interior of the first reaction cell, the first plurality of gas jets configured to atomize the liquid material transferred to the interior of the first reaction cell, a second plurality of gas jets disposed within an interior of the second reaction cell, the second plurality of gas jets configured to atomize the liquid material transferred to the interior of the second reaction cell, a first vacuum element disposed along a periphery of the first reaction cell, and a second vacuum element disposed along a periphery of the at least a second reaction cell.
Abstract:
Chucks for mounting and retaining semiconductor wafers during processing are described, particularly suited for wafer processing involving total immersion of the wafer-chuck structure in a liquid. Chuck structures are disclosed for preventing or hindering processing chemicals from contacting and contaminating large portions of the underside of the wafer undergoing processing, limiting such chemical contact to readily cleaned, relatively small annular regions on the periphery of the wafer. Embodiments include structures with supplemental gas flows on the underside of the wafer as well as the creation of gas/liquid meniscusci to prevent chemical penetration of the wafer's underside. Methods of processing semiconductor wafers employing such chucks are also described.
Abstract:
An apparatus and system for stirring liquid inside a flow cell. In one implementation, the apparatus includes a rotatable disc configured to receive liquid at a top side of the disc and distribute the liquid substantially evenly around a periphery of the flow cell. The disc has a triangular cross sectional area. The apparatus may further include a set of fins attached to a bottom side of the disc, wherein the set of fins is configured to draw the liquid from the periphery of the flow cell into the center of the flow cell.