Abstract:
In the present invention, a contact layer formed of a material having an electron concentration of less than 1×1022 cm−3 is directly provided on a surface of a semiconductor crystal having an n-type conductivity with a band gap of 1.2 eV or less at room temperature. Consequently, the wave function penetration from the contact layer side to the semiconductor surface side is reduced. As a result, the formation of the energy barrier height·ϕB due to the Fermi level pinning phenomenon is much suppressed. It is possible to achieve the contact with a lower resistivity and with high ohmic properties.
Abstract:
A semiconductor structure includes: a germanium layer 30; and an insulating film that has a film 32 that includes a germanium oxide and is formed on the germanium layer and a high dielectric oxide film 34 that is formed on the film including the germanium oxide and has a dielectric constant higher than that of a silicon oxide, wherein: an EOT of the insulating film is 2 nm or less; and on a presumption that an Au acting as a metal film is formed on the insulating film, a leak current density is 10−5×EOT+4 A/cm2 or less in a case where a voltage of the metal film with respect to the germanium layer is applied from a flat band voltage to an accumulation region side by 1 V.
Abstract:
A method of manufacturing a semiconductor substrate includes: heat-treating a germanium layer 30 with an oxygen concentration of 1×1016 cm−3 or greater in a reducing gas atmosphere at 700° C. or greater. Alternatively, a method of manufacturing a semiconductor substrate includes heat-treating a germanium layer 30 having an oxygen concentration of 1×1016 cm−3 or greater in a reducing gas atmosphere so that the oxygen concentration decreases.
Abstract:
A current sensor includes an element that is in a high-resistance state when an absolute value of a current flowing between a first terminal and a second terminal is within a first range, and changes to a low-resistance state in which a resistance value is lower than that in the high-resistance state when the absolute value of the current exceeds the first range, and a circuit that supplies a current to be measured to the element, and senses a value of the current to be measured based on at least one of voltages of the first terminal and the second terminal.
Abstract:
In the present invention, a contact layer formed of a material having an electron concentration of less than 1×1022 cm−3 is directly provided on a surface of a semiconductor crystal having an n-type conductivity with a band gap of 1.2 eV or less at room temperature. Consequently, the wave function penetration from the contact layer side to the semiconductor surface side is reduced. As a result, the formation of the energy barrier height·ϕB due to the Fermi level pinning phenomenon is much suppressed. It is possible to achieve the contact with a lower resistivity and with high ohmic properties.
Abstract:
A semiconductor device having a channel region that is formed in a germanium layer and has a first conductive type, and a source region and a drain region that are formed in the germanium layer and have a second conductive type different from the first conductive type, wherein an oxygen concentration in the channel region is less than an oxygen concentration in a junction interface between at least one of the source region and the drain region and a region that surrounds the at least one of the source region and the drain region and has the first conductive type.
Abstract:
A semiconductor structure includes: a germanium layer; and a first insulating film that is formed on an upper surface of the germanium layer, primarily contains germanium oxide and a substance having an oxygen potential lower than an oxygen potential of germanium oxide, and has a physical film thickness of 3 nm or less; wherein a half width of frequency to height in a 1 μm square area of the upper surface of the germanium layer is 0.7 nm or less.
Abstract:
A current sensor includes an element that is in a high-resistance state when an absolute value of a current flowing between a first terminal and a second terminal is within a first range, and changes to a low-resistance state in which a resistance value is lower than that in the high-resistance state when the absolute value of the current exceeds the first range, and a circuit that supplies a current to be measured to the element, and senses a value of the current to be measured based on at least one of voltages of the first terminal and the second terminal.
Abstract:
A neuron circuit includes: an input terminal to which spike signals are continuously input; a first switch element that has a first end coupled to the input terminal and a second end coupled to a node, remains in a high resistance state even when a single spike signal is input, and goes into a low resistance state when spike signals are input within a time period; a feedback circuit coupled to the node, and causing the input terminal to be at a level when the first switch element goes into the low resistance state; and a second switch element that is connected in series with the first switch element between the input terminal and the node, remains in a low resistance state even when spike signals are input to the input terminal, and goes into a high resistance state when the input terminal becomes at the level.
Abstract:
A semiconductor structure includes: a germanium layer 30; and an aluminum oxynitride film 32 that is formed on the germanium layer, wherein: an EOT of the aluminum oxynitride film is 2 nm or less; Cit/Cacc is 0.4 or less; on a presumption that Au acting as a metal film is formed on the aluminum oxynitride film, the Cit is a capacitance value between the germanium layer and the metal film at a frequency of 1 MHz in a case where a voltage of the metal film with respect to the germanium layer is applied to an inversion region side by 0.5 V; and the Cacc is a capacitance value between the germanium layer and the metal film in an accumulation region.