Abstract:
A method of manufacturing a substrate having a thin film thereabove includes: forming a thin film above the substrate; and crystallizing at least a predetermined area of the silicon thin film into a crystallized area through relative scan of the silicon thin film which is performed while the thin film is being irradiated with a continuous wave light beam, wherein in the crystallizing, a projection of the light beam on the thin film has a major axis in a direction crossing a direction of the relative scan, and the formed crystallized area includes a strip-shaped first area extending in the direction crossing the direction of the relative scan and a second area adjacent to the strip-shaped first area, the strip-shaped first area including crystal grains having an average grain size larger than that of crystal grains in the second area.
Abstract:
An organic electroluminescence element including an anode, a light-emitting layer, a functional layer, and a cathode stacked in this order. The light-emitting layer and the functional layer are in contact with each other. Hole mobility of the light-emitting layer is greater than electron mobility of the light-emitting layer. The electron mobility of the light-emitting layer is equal to or greater than an effective electron mobility of the functional layer. A highest occupied molecular orbital (HOMO) level of a first functional material included in the light-emitting layer is at least 0.4 eV greater than a HOMO level of a second functional material included in the functional layer.
Abstract:
According to one embodiment, a solution for organic EL contains a mixed solvent of two or more kinds of organic solvents which contain at least a first organic solvent and a second organic solvent, and an organic EL contributing material dissolved into the mixed solvent. The coordinates (HSP coordinates) specified by Hansen solubility parameters of the first organic solvent are Hd in a range of 17.5 to 19.5 (J/cm3)1/2, Hp in a range of 3.5 to 5.5 (J/cm3)1/2 and Hh in a range of 3.5 to 5.5 (J/cm3)1/2. The HSP coordinates of the second organic solvent are Hd in a range of 17.5 to 19.5 (J/cm3)1/2, Hp in a range of 0 to 2.0 (J/cm3)1/2, and Hh in a range of 0.5 to 2.5 (J/cm3)1/2.
Abstract:
According to one embodiment, an ink for organic EL includes an organic EL contributing material and an organic solvent. A relative energy difference RED based on Hansen solubility parameters which attribute to the organic EL contributing material and the organic solvent, respectively, is less than 0.5.
Abstract:
A method of thin film formation includes: preparing a substrate; forming a thin film above the substrate; and crystallizing the thin film by irradiating the thin film with a light beam, in which the crystallizing includes steps of: crystallizing the thin film in a first region into a first crystalline thin film by irradiating the first region while scanning a first light beam relative to the substrate, the first region including at least one of: edge portions of the substrate; and a region through which a cutting line passes when the substrate is cut; and subsequently crystallizing the thin film in a second region into a second crystalline thin film by irradiating at least the second region while scanning a second light beam relative to the substrate, and the thin film has a higher absorption ratio of the second light beam than that of the first crystalline thin film.
Abstract:
A thin-film device includes: a first device unit having a first gate electrode and a first crystalline silicon thin film located opposite to the first gate electrode; and a second device unit having a second gate electrode and a second crystalline silicon thin film located opposite to the second gate electrode. The first crystalline silicon thin film includes a strip-shaped first area and a second area smaller than the strip-shaped first area in average grain size. The first device unit has, as a channel, at least a part of the strip-shaped first area. The second silicon thin film includes a second crystalline area smaller than the strip-shaped first area in average grain size. The second device unit has the second crystalline area as a channel. The strip-shaped first area includes crystal grains in contact with the second area on each side of the strip-shaped first area.
Abstract:
An organic EL element including an anode, a cathode, and a light emitting layer between the anode and the cathode. The light emitting layer includes a fluorescent material and a host material. A difference between a lowest unoccupied molecular orbital (LUMO) level of the fluorescent material and a highest occupied molecular orbital (HOMO) level of the fluorescent material is less than or equal to a difference between a LUMO level and a HOMO level of the host material. The LUMO level of the fluorescent material is equal to or higher than the LUMO level of the host material. The HOMO level of the fluorescent material is equal to or higher than the HOMO level of the host material, and a difference in energy level between the HOMO level of the fluorescent material and the HOMO level of the host material is 0.3 eV or less.
Abstract:
Disclosed is a method for manufacturing an organic EL display panel in which a plurality of organic electroluminescence elements each including an organic layer are arranged on an upper side of a substrate. The method includes applying an ink obtained by dissolving or dispersing an organic material in a solvent to a preset application area over the substrate, and cooling the ink applied in the applying within a period until the ink is dried, to lower an ink temperature to a second temperature lower than a first temperature of the ink at a time of application thereof.
Abstract:
A method of producing an organic electroluminescent ink includes reducing ozone contained in an organic electroluminescent mixture comprising an organic electroluminescent material and a solvent.
Abstract:
According to one embodiment, a solution for organic EL contains a mixed solvent of two or more kinds of organic solvents which contain at least a first organic solvent and a second organic solvent, and an organic EL contributing material dissolved into the mixed solvent. The coordinates (HSP coordinates) specified by Hansen solubility parameters of the first organic solvent are Hd in a range of 17.5 to 19.5 (J/cm3)1/2, Hp in a range of 3.5 to 5.5 (J/cm3)1/2 and Hh in a range of 3.5 to 5.5 (J/cm3)1/2. The HSP coordinates of the second organic solvent are Hd in a range of 17.5 to 19.5 (J/cm3)1/2, Hp in a range of 0 to 2.0 (J/cm3)1/2, and Hh in a range of 0.5 to 2.5 (J/cm3)1/2.