NANOSTRUCTURE ARRAY TRANSISTOR
    1.
    发明申请
    NANOSTRUCTURE ARRAY TRANSISTOR 审中-公开
    纳米结构阵列晶体管

    公开(公告)号:US20120025169A1

    公开(公告)日:2012-02-02

    申请号:US12848722

    申请日:2010-08-02

    Abstract: Transistors and methods for forming transistors from groups of nanostructures are disclosed herein. The transistor may be formed from an array of nanostructures that are grown vertically on a substrate. The nanostructures may have lower, middle and upper segments that may be formed with different materials and/or doping to achieve desired effects. Collectively, the lower segments may form the source or drain, with the middle segments collectively forming the channel. Alternatively, the lower segments could collectively form the emitter or collector, with the middle segments collectively forming the base. Transistor electrodes may be planar metal structures that surround sidewalls of the nanostructures. The transistors may be Field Effect Transistors (FETs) or bipolar junction transistors (BJTs). Heterojunction bipolar junction transistors (HBTs) and high electron mobility transistors (HEMTs) are possible.

    Abstract translation: 本文公开了用于从纳米结构体组形成晶体管的晶体管和方法。 晶体管可以由在衬底上垂直生长的纳米结构阵列形成。 纳米结构可以具有可以用不同材料和/或掺杂形成以获得期望效果的下部,中部和上部部分。 总的来说,下段可形成源或漏,中间段共同形成通道。 或者,下段可以共同形成发射器或集电器,中间段共同形成基座。 晶体管电极可以是围绕纳米结构侧壁的平面金属结构。 晶体管可以是场效应晶体管(FET)或双极结型晶体管(BJT)。 异质结双极结晶体管(HBT)和高电子迁移率晶体管(HEMT)是可能的。

    NANOSTRUCTURE OPTOELECTRONIC DEVICE HAVING SIDEWALL ELECTRICAL CONTACT
    2.
    发明申请
    NANOSTRUCTURE OPTOELECTRONIC DEVICE HAVING SIDEWALL ELECTRICAL CONTACT 有权
    具有电子电气接触的纳米结构光电器件

    公开(公告)号:US20110297913A1

    公开(公告)日:2011-12-08

    申请号:US12796569

    申请日:2010-06-08

    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may have a top electrical contact that is physically and electrically connected to sidewalls of the array of nanostructures (e.g., nanocolumns). The top electrical contact may be located such that light can enter or leave the nanostructures without passing through the top electrical contact. Therefore, the top electrical contact can be opaque to light having wavelengths that are absorbed or generated by active regions in the nanostructures. The top electrical contact can be made from a material that is highly conductive, as no tradeoff needs to be made between optical transparency and electrical conductivity. The device could be a solar cell, LED, photo-detector, etc.

    Abstract translation: 公开了纳米结构阵列光电器件。 光电子器件可以具有物理和电连接到纳米结构阵列(例如,纳米柱)的侧壁的顶部电接触。 顶部电接触可以被定位成使得光可以进入或离开纳米结构而不通过顶部电接触。 因此,顶部电接触可以对具有由纳米结构中的活性区域吸收或产生的波长的光是不透明的。 顶部电接触可以由高导电性的材料制成,因为不需要在光学透明度和电导率之间进行折衷。 该装置可以是太阳能电池,LED,光电检测器等

    Nanostructure optoelectronic device with independently controllable junctions
    4.
    发明授权
    Nanostructure optoelectronic device with independently controllable junctions 有权
    纳米结构光电子器件具有独立可控的结

    公开(公告)号:US08659037B2

    公开(公告)日:2014-02-25

    申请号:US12796600

    申请日:2010-06-08

    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may have one or more intermediate electrical contacts that are physically and electrically connected to sidewalls of the array of nanostructures. The contacts may allow different photo-active regions of the optoelectronic device to be independently controlled. For example, one color light may be emitted or detected independently of another using the same group of one or more nanostructures. The optoelectronic device may be a pixilated device that may serve as an LED display or imaging sensor. The pixilated device may have an array of nanostructures with alternating rows and columns of sidewall electrical contacts at different layers. A pixel may be formed at the intersection of a row contact and a column contact. As one example, a single group of one or more nanostructures has a blue sub-pixel, a green sub-pixel, and a red sub-pixel.

    Abstract translation: 公开了纳米结构阵列光电器件。 光电子器件可以具有物理和电连接到纳米结构阵列的侧壁的一个或多个中间电触点。 触点可以允许独立地控制光电子器件的不同光电活性区域。 例如,可以使用相同组的一个或多个纳米结构独立地发射或检测一个颜色的光。 光电子器件可以是可用作LED显示器或成像传感器的像素化器件。 像素化器件可以具有在不同层处具有交替的行和列的侧壁电触点的纳米结构的阵列。 可以在行触点和列触点的交叉处形成像素。 作为一个示例,一组一个或多个纳米结构具有蓝色子像素,绿色子像素和红色子像素。

    Nanostructure optoelectronic device having sidewall electrical contact
    5.
    发明授权
    Nanostructure optoelectronic device having sidewall electrical contact 有权
    具有侧壁电接触的纳米结构光电器件

    公开(公告)号:US08476637B2

    公开(公告)日:2013-07-02

    申请号:US12796569

    申请日:2010-06-08

    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may have a top electrical contact that is physically and electrically connected to sidewalls of the array of nanostructures (e.g., nanocolumns). The top electrical contact may be located such that light can enter or leave the nanostructures without passing through the top electrical contact. Therefore, the top electrical contact can be opaque to light having wavelengths that are absorbed or generated by active regions in the nanostructures. The top electrical contact can be made from a material that is highly conductive, as no tradeoff needs to be made between optical transparency and electrical conductivity. The device could be a solar cell, LED, photo-detector, etc.

    Abstract translation: 公开了纳米结构阵列光电器件。 光电子器件可以具有物理和电连接到纳米结构阵列(例如,纳米柱)的侧壁的顶部电接触。 顶部电接触可以被定位成使得光可以进入或离开纳米结构而不通过顶部电接触。 因此,顶部电接触可以对具有由纳米结构中的活性区域吸收或产生的波长的光是不透明的。 顶部电接触可以由高导电性的材料制成,因为不需要在光学透明度和电导率之间进行折衷。 该装置可以是太阳能电池,LED,光电检测器等

    Multi-junction solar cell having sidewall bi-layer electrical interconnect
    6.
    发明授权
    Multi-junction solar cell having sidewall bi-layer electrical interconnect 有权
    具有侧壁双层电互连的多结太阳能电池

    公开(公告)号:US08431817B2

    公开(公告)日:2013-04-30

    申请号:US12796589

    申请日:2010-06-08

    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may be a multi junction solar cell. The optoelectronic device may have a bi-layer electrical interconnect that is physically and electrically connected to sidewalls of the array of nanostructures. The optoelectronic device may be operated as a multi junction solar cell, wherein each junction is associated with one portion of the device. The bi-layer electrical interconnect allows current to pass from one portion to the next. Thus, the bi-layer electrical interconnect may serve as a replacement for a tunnel junction, which is used in some conventional multi junction solar cells.

    Abstract translation: 公开了纳米结构阵列光电器件。 光电器件可以是多结太阳能电池。 光电子器件可以具有物理和电连接到纳米结构阵列的侧壁的双层电互连。 光电子器件可以作为多结太阳能电池来操作,其中每个结点与器件的一部分相关联。 双层电互连允许电流从一部分传递到下一个部分。 因此,双层电互连可以用作在一些常规多结太阳能电池中使用的隧道结的替代物。

    MULTI-JUNCTION SOLAR CELL HAVING SIDEWALL BI-LAYER ELECTRICAL INTERCONNECT
    7.
    发明申请
    MULTI-JUNCTION SOLAR CELL HAVING SIDEWALL BI-LAYER ELECTRICAL INTERCONNECT 有权
    具有双面双层电气互连的多功能太阳能电池

    公开(公告)号:US20110297214A1

    公开(公告)日:2011-12-08

    申请号:US12796589

    申请日:2010-06-08

    Abstract: Nanostructure array optoelectronic devices are disclosed. The optoelectronic device may be a multi junction solar cell. The optoelectronic device may have a bi-layer electrical interconnect that is physically and electrically connected to sidewalls of the array of nanostructures. The optoelectronic device may be operated as a multi junction solar cell, wherein each junction is associated with one portion of the device. The bi-layer electrical interconnect allows current to pass from one portion to the next. Thus, the bi-layer electrical interconnect may serve as a replacement for a tunnel junction, which is used in some conventional multi junction solar cells.

    Abstract translation: 公开了纳米结构阵列光电器件。 光电器件可以是多结太阳能电池。 光电子器件可以具有物理和电连接到纳米结构阵列的侧壁的双层电互连。 光电子器件可以作为多结太阳能电池来操作,其中每个结点与器件的一部分相关联。 双层电互连允许电流从一部分传递到下一个部分。 因此,双层电互连可以用作在一些常规多结太阳能电池中使用的隧道结的替代物。

    Solar cell having active region with nanostructures having energy wells
    8.
    发明申请
    Solar cell having active region with nanostructures having energy wells 有权
    具有具有能量阱的具有纳米结构的活性区域的太阳能电池

    公开(公告)号:US20080156366A1

    公开(公告)日:2008-07-03

    申请号:US11648059

    申请日:2006-12-29

    Abstract: A method and apparatus for solar cell having graded energy wells is provided. The active region of the solar cell comprises nanostructures. The nanostructures are formed from a material that comprises a III-V compound semiconductor and an element that alters the band gap of the III-V compound semiconductor. For example, the III-V compound semiconductor could be gallium nitride (GaN). As an example, the “band gap altering element” could be indium (In). The concentration of the indium in the active region is non-uniform such that the active region has a number of energy wells, separated by barriers. The energy wells may be “graded”, by which it is meant that the energy wells have a different band gap from one another, generally increasing or decreasing from one well to another monotonically.

    Abstract translation: 提供了一种具有分级能量阱的太阳能电池的方法和装置。 太阳能电池的有源区包括纳米结构。 纳米结构由包含III-V族化合物半导体的材料和改变III-V族化合物半导体的带隙的元素形成。 例如,III-V族化合物半导体可以是氮化镓(GaN)。 作为示例,“带隙改变元件”可以是铟(In)。 活性区域中的铟的浓度是不均匀的,使得活性区域具有被屏障隔开的许多能量阱。 能量井可以“分级”,这意味着能量阱具有彼此不同的带隙,通常从一个孔单调增加或减小。

    METHOD FOR FORMING SOLAR CELL HAVING ACTIVE REGION WITH NANOSTRUCTURES HAVING ENERGY WELLS
    9.
    发明申请
    METHOD FOR FORMING SOLAR CELL HAVING ACTIVE REGION WITH NANOSTRUCTURES HAVING ENERGY WELLS 审中-公开
    用具有能量孔的纳米结构形成具有活性区域的太阳能电池的方法

    公开(公告)号:US20100047957A1

    公开(公告)日:2010-02-25

    申请号:US12611483

    申请日:2009-11-03

    Abstract: A method and apparatus for solar cell having graded energy wells is provided. The active region of the solar cell comprises nanostructures. The nanostructures are formed from a material that comprises a III-V compound semiconductor and an element that alters the band gap of the III-V compound semiconductor. For example, the III-V compound semiconductor could be gallium nitride (GaN). As an example, the “band gap altering element” could be indium (In). The concentration of the indium in the active region is non-uniform such that the active region has a number of energy wells, separated by barriers. The energy wells may be “graded”, by which it is meant that the energy wells have a different band gap from one another, generally increasing or decreasing from one well to another monotonically.

    Abstract translation: 提供了一种具有分级能量阱的太阳能电池的方法和装置。 太阳能电池的有源区包括纳米结构。 纳米结构由包含III-V族化合物半导体的材料和改变III-V族化合物半导体的带隙的元素形成。 例如,III-V族化合物半导体可以是氮化镓(GaN)。 作为示例,“带隙改变元件”可以是铟(In)。 活性区域中的铟的浓度是不均匀的,使得活性区域具有被屏障隔开的许多能量阱。 能量井可以“分级”,这意味着能量阱具有彼此不同的带隙,通常从一个孔单调增加或减小。

    Solar cell having active region with nanostructures having energy wells
    10.
    发明授权
    Solar cell having active region with nanostructures having energy wells 有权
    具有具有能量阱的具有纳米结构的活性区域的太阳能电池

    公开(公告)号:US07629532B2

    公开(公告)日:2009-12-08

    申请号:US11648059

    申请日:2006-12-29

    Abstract: A method and apparatus for solar cell having graded energy wells is provided. The active region of the solar cell comprises nanostructures. The nanostructures are formed from a material that comprises a III-V compound semiconductor and an element that alters the band gap of the III-V compound semiconductor. For example, the III-V compound semiconductor could be gallium nitride (GaN). As an example, the “band gap altering element” could be indium (In). The concentration of the indium in the active region is non-uniform such that the active region has a number of energy wells, separated by barriers. The energy wells may be “graded”, by which it is meant that the energy wells have a different band gap from one another, generally increasing or decreasing from one well to another monotonically.

    Abstract translation: 提供了一种具有分级能量阱的太阳能电池的方法和装置。 太阳能电池的有源区包括纳米结构。 纳米结构由包含III-V族化合物半导体的材料和改变III-V族化合物半导体的带隙的元素形成。 例如,III-V族化合物半导体可以是氮化镓(GaN)。 作为示例,“带隙改变元件”可以是铟(In)。 活性区域中的铟的浓度是不均匀的,使得活性区域具有被屏障隔开的许多能量阱。 能量井可以“分级”,这意味着能量阱具有彼此不同的带隙,通常从一个孔单调增加或减小。

Patent Agency Ranking