摘要:
A method of forming a quasi-self-aligned heterojunction bipolar transistor (HBT) that exhibits high-performance is provided. The method includes the use of a patterned emitter landing pad stack which serves to improve the alignment for the emitter-opening lithography and as an etch stop layer for the emitter opening etch. The present invention also provides an HBT that includes a raised extrinsic base having monocrystalline regions located beneath the emitter landing pad stack.
摘要:
A method of forming a quasi-self-aligned heterojunction bipolar transistor (HBT) that exhibits high-performance is provided. The method includes the use of a patterned emitter landing pad stack which serves to improve the alignment for the emitter-opening lithography and as an etch stop layer for the emitter opening etch. The present invention also provides an HBT that includes a raised extrinsic base having monocrystalline regions located beneath the emitter landing pad stack.
摘要:
A bipolar transistor with raised extrinsic base and selectable self-alignment between the extrinsic base and the emitter is disclosed. The fabrication method may include the formation of a predefined thickness of a first extrinsic base layer of polysilicon or silicon on an intrinsic base. A dielectric landing pad is then formed by lithography on the first extrinsic base layer. Next, a second extrinsic base layer of polysilicon or silicon is formed on top of the dielectric landing pad to finalize the raised extrinsic base total thickness. An emitter opening is formed using lithography and RIE, where the second extrinsic base layer is etched stopping on the dielectric landing pad. The degree of self-alignment between the emitter and the raised extrinsic base is achieved by selecting the first extrinsic base layer thickness, the dielectric landing pad width, and the spacer width.
摘要:
A bipolar transistor with raised extrinsic base and selectable self-alignment between the extrinsic base and the emitter is disclosed. The fabrication method may include the formation of a predefined thickness of a first extrinsic base layer of polysilicon or silicon on an intrinsic base. A dielectric landing pad is then formed by lithography on the first extrinsic base layer. Next, a second extrinsic base layer of polysilicon or silicon is formed on top of the dielectric landing pad to finalize the raised extrinsic base total thickness. An emitter opening is formed using lithography and RIE, where the second extrinsic base layer is etched stopping on the dielectric landing pad. The degree of self-alignment between the emitter and the raised extrinsic base is achieved by selecting the first extrinsic base layer thickness, the dielectric landing pad width, and the spacer width.
摘要:
The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
摘要:
The present invention provides a method of forming a self-aligned heterobipolar transistor (HBT) device in a BiCMOS technology. The method includes forming a raised extrinsic base structure by using an epitaxial growth process in which the growth rate between single crystal silicon and polycrystalline silicon is different and by using a low temperature oxidation process such as a high-pressure oxidation (HIPOX) process to form a self-aligned emitter/extrinsic base HBT structure.
摘要:
A method of forming an integrated circuit structure includes: forming a vent via extending through a shallow trench isolation (STI) and into a substrate; selectively removing an exposed portion of the substrate at a bottom of the vent via to form an opening within the substrate, wherein the opening within the substrate abuts at least one of a bottom surface or a sidewall of the STI; and sealing the vent via to form an air gap in the opening within the substrate.
摘要:
A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.
摘要:
A high density capacitor and low density capacitor simultaneously formed on a single wafer and a method of manufacture is provided. The method includes depositing a bottom plate on a dielectric material; depositing a low-k dielectric on the bottom plate; depositing a high-k dielectric on the low-k dielectric and the bottom plate; depositing a top plate on the high-k dielectric; and etching a portion of the bottom plate and the high-k dielectric to form a first metal-insulator-metal (MIM) capacitor having a dielectric stack with a first thickness and a second MIM capacitor having a dielectric stack with a second thickness different than the first thickness.
摘要:
A substrate includes a first region having a first resistivity, for optimizing a field effect transistor, a second region having a second resistivity, for optimizing an npn subcollector of a bipolar transistor device and triple well, a third region having a third resistivity, with a high resistivity for a passive device, a fourth region, substantially without implantation, to provide low perimeter capacitance for devices.