Abstract:
The invention pertains to a process for preparing a synthetic clay mineral which comprises silicon, aluminum, and at least one octahedron ion, which clay mineral has a total content of sodium and potassium of less than 0.5 wt. %, comprising the steps of a) providing a silica-alumina with a total content of sodium and potassium of less than 2.0 wt. % b) combining the silica-alumina with an octahedron ion source in such a manner that less than 0.1 mole of the total of sodium or potassium is added per mole of octahedron ion, c) if necessary, adjusting the pH to a value of at least 7, with less than 0.1 mole of the total of sodium and potassium being added per mole of octahedron ion during the pH adjustment, d) ageing the precipitate formed in c) at a temperature of 0-350° C. in an aqueous environment; e) optionally isolating the resulting material, optionally followed by washing. The invention makes it possible to prepare a saponite with a low content of sodium and potassium without an ion-exchange on the final material being necessary.
Abstract:
The invention pertains to a cogel comprising oxidic compounds of one or more trivalent metallic elements selected from the group of aluminum, borium, gallium, chromium, iron, cobalt, manganese, vanadium, molybdenum, tungsten, indium, rhodium, scandium, or mixtures thereof, oxidic compounds of one or more tetravalent metallic elements selected from the group of silicon, titanium, germanium, or mixtures thereof and oxidic compounds of one or more divalent metallic elements with at least one divalent metallic element not selected from Group VIII non-noble metallic elements, wherein a) the cogel is essentially X-ray amorphous apart from saponite, if present; b) the saponite content CA of the cogel is less than 60%; c) the cogel has a surface area of at least 400 m2/g; d) the cogel has a cation-exchange capacity of at least 0.5 wt %; and e) the total of sodium and potassium contained in the cogel amounts to less than 0.5 wt %, based on the total weight of the cogel. The invention further relates to a process for preparing said cogel as well as to catalysts comprising these cogels as cracking component, a process for preparing said catalysts, and the use of these catalysts for hydroprocessing applications.
Abstract:
A process for sulfiding a cobalt-molybdenum bulk catalyst precursor to form a bulk sulfided alcohol synthesis catalyst. The process steps include contacting an oxidic bulk cobalt-molybdenum catalyst precursor with an amount of a sulfur-containing compound which is in the range of about 1 to about 10 moles of sulfur per mole of metals, at one or more temperatures at or in excess of about 300° C. in a medium which is substantially devoid of added hydrogen, so as to form a sulfided bulk cobalt-molybdenum catalyst product. Also described are processes for forming the catalyst precursor, processes for producing an alcohol using the catalyst product and the catalyst product itself.
Abstract:
A process for sulfiding a cobalt-molybdenum bulk catalyst precursor to form a bulk sulfided alcohol synthesis catalyst. The process steps include contacting an oxidic bulk cobalt-molybdenum catalyst precursor with an amount of a sulfur-containing compound which is in the range of about 1 to about 10 moles of sulfur per mole of metals, at one or more temperatures at or in excess of about 300° C. in a medium which is substantially devoid of added hydrogen, so as to form a sulfided bulk cobalt-molybdenum catalyst product. Also described are processes for forming the catalyst precursor, processes for producing an alcohol using the catalyst product and the catalyst product itself.
Abstract:
A method for the hydrodeoxygenation of an oxygenate feedstock comprising contacting the feedstock with a sulphided catalyst composition under hydrodeoxygenation conditions, wherein the catalyst composition comprises: i) a porous carrier substantially comprised of alumina, the carrier comprising between about 0.001 and about 1 wt. % phosphorous and between about 0.001 and about 1 wt. % silicon (both calculated as oxides) and having a mean pore diameter in the range from about 5 nm to about 40 nm; and, ii) from about 1 to about 20 wt. % of an active metal component (calculated as oxides based on the weight of the composition) borne on said porous carrier and which comprises at least one Group VIB metal and at least one Group VIII metal.
Abstract:
A catalyst system for treating a hydrocarbonaceous feed comprising a matrix selected from the group consisting of alumna, silica alumina, titanium alumina and mixtures thereof; a support medium substantially uniformly distributed through said matrix comprising a SAPO-11 molecular sieve; and 0.1 to 1.0 wt % (based on the total weight of the catalyst system) of a catalytically active metal phase supported on said medium and comprising a metal selected from the group consisting of platinum, palladium, ruthenium, rhodium or mixtures thereof. The catalyst system is characterized in that said SAPO-11 molecular sieve has: a) a silica to alumina molar ratio of 0.08 to 0.24; b) a phosphorous to alumina ratio of 0.75 to 0.83; c) a surface area of at least 150 m2/g; d) a crystallite size in the range 250 to 600 angstroms; and, e) a sodium content of less than 2000 ppm weight.
Abstract:
A process for the production of a ketone having a carbon number between about 20 and about 40 comprising contacting fatty acids containing from about 10 to about 21 carbons atoms with a hydrotalcite catalyst under conditions effective to decarboxylate said acids. More particularly said decarboxylation conditions comprise: a temperature in the range between about 300° C. and about 400° C.; a pressure in the range between about 0.01 and about 5 bar; and a weight hourly space velocity (WHSV) of from about 0.1 to about 10 hr−1.
Abstract:
A method for the hydrodeoxygenation of an oxygenate feedstock comprising contacting the feedstock with a sulphided catalyst composition under hydrodeoxygenation conditions, wherein the catalyst composition comprises: i) a porous carrier substantially comprised of alumina, the carrier comprising between about 0.001 and about 1 wt. % phosphorous and between about 0.001 and about 1 wt. % silicon (both calculated as oxides) and having a mean pore diameter in the range from about 5 nm to about 40 nm; and, ii) from about 1 to about 20 wt. % of an active metal component (calculated as oxides based on the weight of the composition) borne on said porous carrier and which comprises at least one Group VIB metal and at least one Group VIII metal.
Abstract:
A process for the production of a ketone having a carbon number between about 20 and about 40 comprising contacting fatty acids containing from about 10 to about 21 carbons atoms with a hydrotalcite catalyst under conditions effective to decarboxylate said acids. More particularly said decarboxylation conditions comprise: a temperature in the range between about 300° C. and about 400° C.; a pressure in the range between about 0.01 and about 5 bar; and a weight hourly space velocity (WHSV) of from about 0.1 to about 10 hr−1.