Abstract:
The invention pertains to a carrier composition comprising (a) at least 30 wt % of a synthetic cracking component, based on the total weight of the carrier composition, which comprises oxidic compounds of one or more trivalent metallic elements, tetravalent metallic elements, and divalent metallic elements, said cracking component comprising elemental clay platelets with an average diameter of 1 &mgr;m or less and an average degree of stacking of 20 platelets per stack or less, and/or comprising a cogel with a saponite content CA of less than 60%, in which the total of sodium and potassium amounts to less than 1 wt %, based on the total weight of the cogel, and (b) 1-25 wt % of a zeolite Y, based on the total weight of the carrier composition, with a unit cell size below 24.35 Å. The invention further pertains to a catalyst comprising said carrier composition and at least a hydrogenation metal, and a process for converting heavy feedstock into middle distillates using said catalyst.
Abstract:
An improved alkylation process utilizing a solid-acid catalyst comprising a rare earth containing zeolite and a hydrogenation metal is disclosed.
Abstract:
An improved alkylation process utilizing a solid-acid catalyst comprising a rare earth containing zeolite and a hydrogenation metal is disclosed.
Abstract:
A catalyst having at least one Group VIB metal component, at least one Group VIII metal component, a phosphorus component, and a boron-containing carrier component. The amount of the phosphorus component is at least 1 wt %, expressed as an oxide (P2O5) and based on the total weight of the catalyst, and the amount of boron content is in the range of about 1 to about 13 wt %, expressed as an oxide (B2O3) and based on the total weight of the catalyst. In one embodiment of the invention, the boron-containing carrier component is a product of a co-extrusion of at least a carrier and a boron source. A method for producing the catalyst and its use for hydrotreating a hydrocarbon feed are also described.
Abstract translation:具有至少一种VIB族金属组分,至少一种第Ⅷ族金属组分,磷组分和含硼载体组分的催化剂。 磷成分的量至少为1重量%,以氧化物(P2O5)表示,基于催化剂的总重量,硼含量在约1至约13重量%的范围内,表达 作为氧化物(B 2 O 3),并且基于催化剂的总重量。 在本发明的一个实施方案中,含硼载体组分是至少载体和硼源的共挤出物的产物。 还描述了用于制备催化剂的方法及其用于加氢处理烃进料的用途。
Abstract:
The invention pertains to a process for preparing a synthetic clay mineral which comprises silicon, aluminum, and at least one octahedron ion, which clay mineral has a total content of sodium and potassium of less than 0.5 wt. %, comprising the steps of a) providing a silica-alumina with a total content of sodium and potassium of less than 2.0 wt. % b) combining the silica-alumina with an octahedron ion source in such a manner that less than 0.1 mole of the total of sodium or potassium is added per mole of octahedron ion, c) if necessary, adjusting the pH to a value of at least 7, with less than 0.1 mole of the total of sodium and potassium being added per mole of octahedron ion during the pH adjustment, d) ageing the precipitate formed in c) at a temperature of 0-350° C. in an aqueous environment; e) optionally isolating the resulting material, optionally followed by washing. The invention makes it possible to prepare a saponite with a low content of sodium and potassium without an ion-exchange on the final material being necessary.
Abstract:
The invention pertains to a cogel comprising oxidic compounds of one or more trivalent metallic elements selected from the group of aluminum, borium, gallium, chromium, iron, cobalt, manganese, vanadium, molybdenum, tungsten, indium, rhodium, scandium, or mixtures thereof, oxidic compounds of one or more tetravalent metallic elements selected from the group of silicon, titanium, germanium, or mixtures thereof and oxidic compounds of one or more divalent metallic elements with at least one divalent metallic element not selected from Group VIII non-noble metallic elements, wherein a) the cogel is essentially X-ray amorphous apart from saponite, if present; b) the saponite content CA of the cogel is less than 60%; c) the cogel has a surface area of at least 400 m2/g; d) the cogel has a cation-exchange capacity of at least 0.5 wt %; and e) the total of sodium and potassium contained in the cogel amounts to less than 0.5 wt %, based on the total weight of the cogel. The invention further relates to a process for preparing said cogel as well as to catalysts comprising these cogels as cracking component, a process for preparing said catalysts, and the use of these catalysts for hydroprocessing applications.
Abstract:
A catalyst having at least one Group VIB metal component, at least one Group VIII metal component, a phosphorus component, and a boron-containing carrier component. The amount of the phosphorus component is at least 1 wt %, expressed as an oxide (P2O5) and based on the total weight of the catalyst, and the amount of boron content is in the range of about 1 to about 13 wt %, expressed as an oxide (B2O3) and based on the total weight of the catalyst. In one embodiment of the invention, the boron-containing carrier component is a product of a co-extrusion of at least a carrier and a boron source. A method for producing the catalyst and its use for hydrotreating a hydrocarbon feed are also described.
Abstract:
The instant invention pertains to a process for treating a feed, for example a Light Cycle Oil (LCO), having a high content of S and/or N impurities and/or a high content of aromatics, comprising the following steps, in particular in such an order a step of desulphurisation (HDS) and denitrification (HDN) of a feed, in particular LCO, is passed in presence of hydrogen over a catalyst, containing metals of the group VI B and VIII, leading to an effluent, optionally a step of stripping of the effluent, at least a subsequent step for dearomatization (HDA) in which at least a portion of the effluent, optionally stripped, is passed in presence of hydrogen over a catalyst comprising a combination of platinum and palladium supported on a carrier comprising silica-alumina dispersed in an alumina binder wherein the amount of alumina binder is 5-50 wt. % based on the total weight of the silica-alumina and alumina binder present in the carrier and wherein the silica-alumina comprises 5-50 wt. % of alumina based on the weight of the silica-alumina, and recovering the final load obtained, the use of a specific catalyst and a process for preparing diesel comprising the step of mixing the final effluent obtained by a process of the invention.