Abstract:
A tire apparatus for driving a vehicle allows the vehicle to be driven during periods of both low tire pressure and normal tire pressure. The tire apparatus has a tire that has a tread section. The tire has a pair of side walls that are located adjacent to the tread section. A first bead is located at an end of one of the side walls, and a second bead is located at an end of the other side wall. A wheel is also present that has a rim with a first bead seat and a second bead seat. The wheel is configured for attachment to the vehicle. The wheel has a support member for engaging the tire during periods of low tire pressure. At least one of the first and second bead seats has a plurality of friction members to prevent relative rotational movement between the tire and the rim.
Abstract:
A tire with radial carcass reinforcement having beads with a heel portion on an axially inner side and a toe portion on an axially outer side includes two carcass reinforcement plies for tension in higher sidewall tires. The bead includes at least one bead wire coated with a rubber mix, a wedge formed of a rubber mix disposed axially outward of the at least one bead wire, and at least one rubber filler located axially and radially outward of the bead wire and wedge. The wedge is defined by two sides extending at an acute angle axially from an apex A located beneath the section of the at least one bead wire, the rubber mix forming the wedge having a Shore A hardness of at least 65 and greater than the Shore A hardness of the at least one rubber filler. According to one embodiment, a carcass reinforcement includes two plies, a first radial reinforcement ply wound on the at least one bead wire to form a first upturn, as viewed in meridian section, the reinforcement ply is wound about said bead wire passing from the heel to the toe of said at least one bead, the first upturn engaging the radially outer side the wedge and, a second radial reinforcement ply wound on said at least one bead wire, wherein, when viewed in meridian section, the second reinforcement ply is disposed in parallel to the first radial reinforcement ply in a sidewall area of the tire and is wound about said bead wire passing from the heel to the toe of said at least one bead with a second upturn extending into engagement with the radial inner side of the wedge.
Abstract:
A tire comprising a tread portion designed to be worn off during the life of the tire having a radial thickness T, an outer edge and an inner edge, the axial distance between the outer edge and the inner edge defining the axial width L of the tread, the tread comprising four adjacent portions made of a four rubber compounds, wherein the rubber compounds making up the first and third portions are predominantly filled with carbon black filler, wherein the rubber compounds making up the second and fourth portion are predominantly filled with non carbon black filler, wherein the rubber compounds making up the first and third portions have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of the rubber compounds making up the second and fourth portion, and wherein the axial width of the first portion decreases and the axial width of the second portion increases as a function of the distance from the rolling surface of the tread when unworn.
Abstract:
Tire (10) comprising a tread (40) having a mean radial height HB, an outer edge (45) and an inner edge (46), the axial distance between the outer edge (45) and the inner edge (46) defining the axial width L of the tread, the tread comprising a first portion (411) made of a first rubber compound, extending from the outer edge (45) to a first axial position at an axial distance from the outer edge of between 20% and 40% of the axial width; a second portion (412) made of a second rubber compound, extending from said first axial position to a second axial position at an axial distance from the outer edge of between 50% and 60% of the axial width L; a third portion (413) made of a third rubber compound extending from said second axial position to a third axial position at an axial distance from the outer edge of between 80% and 90% of the axial width L; and a fourth portion (414) made of a fourth rubber compound, extending from said third axial position to the inner edge (46) of the tread, wherein said first and third rubber compounds are predominantly filled with carbon black filler, wherein said second and fourth rubber compounds are predominantly filled with non carbon black filler, and wherein said first rubber compound and said third rubber compound have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of said second rubber compound and said fourth rubber compound.
Abstract:
Tire (10) comprising a tread (40) having a mean radial height HB, an outer edge (45) and an inner edge (46), the axial distance between the outer edge (45) and the inner edge (46) defining the axial width L of the tread, the tread comprising a first portion (411) made of a first rubber compound, extending from the outer edge (45) to a first axial position at an axial distance from the outer edge of between 20% and 40% of the axial width; a second portion (412) made of a second rubber compound, extending from said first axial position to a second axial position at an axial distance from the outer edge of between 50% and 60% of the axial width L; a third portion (413) made of a third rubber compound extending from said second axial position to a third axial position at an axial distance from the outer edge of between 80% and 90% of the axial width L; and a fourth portion (414) made of a fourth rubber compound, extending from said third axial position to the inner edge (46) of the tread, wherein said first and third rubber compounds are predominantly filled with carbon black filler, wherein said second and fourth rubber compounds are predominantly filled with non carbon black filler, and wherein said first rubber compound and said third rubber compound have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of said second rubber compound and said fourth rubber compound.
Abstract:
A tire comprising a tread having a running surface, and at least one groove of generally circumferential orientation and a plurality of relief elements, each of which has a contact face with a transverse width Lt and lateral walls, at least one being provided with a plurality of devices for attenuating resonance noise, being formed in a relief element and comprising a cavity of elongate shape having a total length Lc and a total volume Vc, opening onto a lateral wall, having a total length Lc which is greater than the transverse width Lt, and a geometry comprising several cavity portions connected together, wherein the length Lc equal to the sum of the lengths of all the cavity portions, being extended over the whole of its length Lc by a sipe extending radially outwards opening onto the running surface, this tread being such that the sum Ly of the lengths projected in the transverse direction of each cavity is at least 1.5 times greater than the sum Lx of the lengths projected in the circumferential direction of each cavity.
Abstract:
A tire comprising a tread portion designed to be worn off during the life of the tire having a radial thickness T, an outer edge and an inner edge, the axial distance between the outer edge and the inner edge defining the axial width L of the tread, the tread comprising four adjacent portions made of a four rubber compounds, wherein the rubber compounds making up the first and third portions are predominantly filled with carbon black filler, wherein the rubber compounds making up the second and fourth portion are predominantly filled with non carbon black filler, wherein the rubber compounds making up the first and third portions have a value for tan δ at 0° C., at a stress of 0.7 MPa, that is lower than that of the rubber compounds making up the second and fourth portion, and wherein the axial width of the first portion decreases and the axial width of the second portion increases as a function of the distance from the rolling surface of the tread when unworn.
Abstract:
A tire having a radial carcass reinforcement winding within each bead around at least one heel reinforcement element and whose meridian profile, when the tire is mounted and inflated, has a constant direction of curvature in a first bead and a sidewall extending it radially, and has a tangent TT′ to the point of tangency T of the carcass reinforcement profile with the annular element of the first bead which forms with the axis of rotation an angle &phgr; which is open towards the outside and is greater than 45°, wherein, viewed in meridian section, at least the aforesaid sidewall comprises a reinforcing profiled element having, viewed in section, substantially the form of a crescent, one of the axially inner or outer faces of the crescent-shaped profiled element follows the profile of the carcass reinforcement, and the trace of the face of the crescent-shaped profiled element opposite the face of such profiled element closest to the carcass reinforcement has a single direction of curvature.