Alignment of multicomponent microfabricated structures
    1.
    发明授权
    Alignment of multicomponent microfabricated structures 有权
    多组分微制造结构的对齐

    公开(公告)号:US06322683B1

    公开(公告)日:2001-11-27

    申请号:US09291808

    申请日:1999-04-14

    IPC分类号: G01N2726

    摘要: Microfluidic devices are fabricated by fabricating structures that are used to align elements that are to be attached to the devices or tools that are to be used in further fabrication steps on those devices. Elements to be attached include additional substrate layers, external sampling elements, e.g. capillaries, and the like. Preferred alignment structures include wells over which reservoirs are positioned, notches for use with alignment keys to align substrate layers or for receiving additional structural elements, and targets or guide holes for receiving tooling in further fabrication steps.

    摘要翻译: 微流体装置通过制造用于对准要附接到在这些装置上的进一步制造步骤中使用的装置或工具的元件的结构来制造。 待连接的元件包括附加的基底层,外部取样元件, 毛细血管等。 优选的对准结构包括在其上定位储存器的孔,用于对齐键以对准衬底层或用于接收附加结构元件的凹口,以及用于在进一步制造步骤中接收工具的靶或引导孔。

    Multi depth substrate fabrication processes
    4.
    发明授权
    Multi depth substrate fabrication processes 有权
    多深度基板制造工艺

    公开(公告)号:US06569607B2

    公开(公告)日:2003-05-27

    申请号:US09846679

    申请日:2001-05-01

    IPC分类号: G03F700

    摘要: Method of fabricating microstructures on a substrate. The method comprises providing a substrate layer having a first surface with a resist layer. First selected regions of the resist layer are exposed to an environment that renders the resist layer more or less soluble in a developer solution. The resist layer is then developed in the developer solution to expose selected regions of the substrate surface. Second selected regions of the resist layer are then exposed to an environment that renders the resist layer more or less soluble in the developer solution by aligning exposure of the second selected regions to the first selected regions. The first selected regions of the substrate surface are etched. Second selected regions of the resist layer are then developed to expose the second selected regions of the substrate surface.

    摘要翻译: 在基板上制造微结构的方法。 该方法包括提供具有抗蚀剂层的具有第一表面的基底层。 抗蚀剂层的第一选择区域暴露于使抗蚀剂层或多或少可溶于显影剂溶液的环境中。 然后将抗蚀剂层在显影剂溶液中显影以暴露基底表面的选定区域。 然后将抗蚀剂层的第二选择区域暴露于通过将第二选定区域的曝光与第一选定区域对准而使抗蚀剂层或多或少可溶于显影剂溶液的环境。 蚀刻基板表面的第一选定区域。 然后显影抗蚀剂层的第二选定区域以暴露衬底表面的第二选定区域。

    Fluorescence standard for use in microfluidic instruments
    7.
    发明授权
    Fluorescence standard for use in microfluidic instruments 有权
    用于微流体仪器的荧光标准品

    公开(公告)号:US06635487B1

    公开(公告)日:2003-10-21

    申请号:US09850855

    申请日:2001-05-07

    IPC分类号: G01N3100

    摘要: A test device for use as a fluorescent standard in microfluidic analytical detection systems includes one or more slits that correspond to, and are of similar dimension to, one or more microchannels in a detection region on a corresponding analysis chip. A fluorescent material is attached to the test device on the side opposite the illumination source such that excitation radiation passes through the slit(s), which defines the focal plane of the illumination optics, and impinges on the fluorescent material thereby causing the fluorescent material to fluoresce. By displacing the fluorescent material relative to the focal plane, the intensity of the radiation exciting the fluorescent material is dispersed relative to the intensity of the radiation at the focal plane, and concomitantly the strength of the resulting fluorescent signal is reduced. An optional spacer is provided to increase the distance of the fluorescent material from the focal plane so as to increase the dispersion of the radiation (decrease the intensity impinging on the fluorescent material). The strength of the resulting fluorescent signal from the fluorescent material can be controlled by selecting a spacer with the appropriate depth.

    摘要翻译: 在微流体分析检测系统中用作荧光标准的测试装置包括与相应分析芯片上的检测区域中的一个或多个微通道对应并且与其尺寸相似的一个或多个狭缝。 荧光材料在与照明源相对的一侧附接到测试装置,使得激发辐射通过限定照明光学器件的焦平面的狭缝,并且照射在荧光材料上,从而使荧光材料 荧光。 通过相对于焦平面移动荧光材料,激发荧光材料的辐射的强度相对于焦平面处的辐射强度分散,并且伴随地,所得荧光信号的强度降低。 提供可选的间隔物以增加荧光材料与焦平面的距离,从而增加辐射的分散(降低照射在荧光材料上的强度)。 可以通过选择适当深度的间隔物来控制来自荧光材料的荧光信号的强度。