摘要:
A method for forming a stressed channel field effect transistor (FET) with source/drain buffers includes etching cavities in a substrate on either side of a gate stack located on the substrate; depositing source/drain buffer material in the cavities; etching the source/drain buffer material to form vertical source/drain buffers adjacent to a channel region of the FET; and depositing source/drain stressor material in the cavities adjacent to and over the vertical source/drain buffers.
摘要:
A method for forming a stressed channel field effect transistor (FET) with source/drain buffers includes etching cavities in a substrate on either side of a gate stack located on the substrate; depositing source/drain buffer material in the cavities; etching the source/drain buffer material to form vertical source/drain buffers adjacent to a channel region of the FET; and depositing source/drain stressor material in the cavities adjacent to and over the vertical source/drain buffers.
摘要:
A semiconductor structure and method for forming dielectric spacers and epitaxial layers for a complementary metal-oxide-semiconductor field effect transistor (CMOS transistor) are disclosed. Specifically, the structure and method involves forming dielectric spacers that are disposed in trenches and are adjacent to the silicon substrate, which minimizes leakage current. Furthermore, epitaxial layers are deposited to form source and drain regions, wherein the source region and drain regions are spaced at a distance from each other. The epitaxial layers are disposed adjacent to the dielectric spacers and the transistor body regions (i.e., portion of substrate below the gates), which can minimize transistor junction capacitance. Minimizing transistor junction capacitance can enhance the switching speed of the CMOS transistor. Accordingly, the application of dielectric spacers and epitaxial layers to minimize leakage current and transistor junction capacitance in CMOS transistors can enhance the utility and performance of the CMOS transistors in low power applications.
摘要:
A field effect transistor device includes a gate stack portion disposed on a substrate, and a channel region in the substrate having a depth partially defined by the gate stack portion and a silicon region of the substrate, the silicon region having a sloped profile such that a distal regions of the channel region have greater depth than a medial region of the channel region.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
Channel depth in a field effect transistor is limited by an intra-layer structure including a discontinuous film or layer formed within a layer or substrate of semiconductor material. Channel depth can thus be controlled much in the manner of SOI or UT-SOI technology but with less expensive substrates and greater flexibility of channel depth control while avoiding floating body effects characteristic of SOI technology. The profile or cross-sectional shape of the discontinuous film may be controlled to an ogee or staircase shape to improve short channel effects and reduce source/drain and extension resistance without increase of capacitance. Materials for the discontinuous film may also be chosen to impose stress on the transistor channel from within the substrate or layer and provide increased levels of such stress to increase carrier mobility. Carrier mobility may be increased in combination with other meritorious effects.
摘要:
A method of modeling soft errors in a logic circuit uses two separate current sources inserted at the source and drain of a device to simulate a single event upset (SEU) caused by, e.g., an alpha-particle strike. In an nfet implementation the current flows from the source or drain toward the body of the device. Current waveforms having known amplitudes are injected at the current sources while simulating operation of the logic circuit and the state of the logic circuit is determined from the simulated operation. The amplitudes of the current waveforms can be independently adjusted. The simulator monitors the state of device and makes a log entry when a transition occurs. The process may be repeated for other devices in the logic circuit to provide an overall characterization of the susceptibility of the circuit to soft errors.
摘要:
Disclosed is a semiconductor structure that incorporates a capacitor for reducing the soft error rate of a device within the structure. The multi-layer semiconductor structure includes an insulator-filled deep trench isolation structure that is formed through an active silicon layer, a first insulator layer, and a first bulk layer and extends to a second insulator layer. The resulting isolated portion of the first bulk layer defines the first capacitor plate. A portion of the second insulator layer that is adjacent the first capacitor plate functions as the capacitor dielectric. Either the silicon substrate or a portion of a second bulk layer that is isolated by a third insulator layer and another deep trench isolation structure can function as the second capacitor plate. A first capacitor contact couples, either directly or via a wire array, the first capacitor plate to a circuit node of the device in order to increase the critical charge, Qcrit, of the circuit node.
摘要:
A structure and associated method for annealing a trapped charge from a semiconductor device. The semiconductor structure comprises a substrate and a first heating element. The substrate comprises a bulk layer, an insulator layer and a device layer. The first heating element is formed within the bulk layer. A first side of the first heating element is adjacent to a first portion of the insulator layer. The first heating element is adapted to be selectively activated to generate thermal energy to heat the first portion of the insulator layer and anneal a trapped electrical charge from the first portion of the insulator layer.
摘要:
A semiconductor structure includes a semiconductor substrate; a gate stack on the semiconductor substrate; a plurality of spacers disposed on laterally opposing sides of the gate stack; source and drain regions proximate to the spacers, and a channel region subjacent to the gate stack and disposed between the source and drain regions; and a stressor subjacent to the channel region, and embedded within the semiconductor substrate, the embedded stressor being formed of a triangular-shape.