摘要:
Disclosed is a method of making a SVGMR sensor element. In the first embodiment a buffer layer is formed between a seed layer and a ferromagnetic (FM) free layer, the buffer layer being composed of alpha-Fe2O3 having a crystal lattice constant that is close to the FM free layer's crystal constant and has the same crystal structure. The metal oxide buffer layer enhances the specular scattering. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter-SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment include a pinned FM layer comprising a three layer structure of a lower AP layer, a space layer (e.g., Ru) and an upper AP layer.
摘要翻译:公开了一种制造SVGMR传感器元件的方法。 在第一实施例中,在种子层和不含铁磁性(FM)的层之间形成缓冲层,该缓冲层由α-Fe 2 O 3 3 N 3 晶格常数接近于FM自由层的晶体常数,具有相同的晶体结构。 金属氧化物缓冲层增强了镜面散射。 在第二实施例中,在缓冲层上形成高电导率层(HCL)以产生自旋滤波器-GVGMR。 HCL层增强了旋转过滤器SVGMR的GMR比。 第三实施例包括包括下AP层的三层结构,空间层(例如Ru)和上AP层的钉扎FM层。
摘要:
A Spin Valve GMR and Spin Filter SVGMR configuration where in the first embodiment an important buffer layer is composed of an metal oxide having a crystal lattice constant that is close the 1st FM free layer's crystal lattice constant and has the same crystal structure (e.g., FCC, BCC, etc.). The metal oxide buffer layer enhances the specular scattering. The spin valve giant magnetoresistance (SVGMR) sensor comprises: a seed layer over the substrate. An important metal oxide buffer layer (buffer layer) over the seed layer. The metal oxide layer preferably is comprised of NiO or alpha-Fe2O3. A free ferromagnetic layer over the metal oxide layer. A non-magnetic conductor spacer layer over the free ferromagnetic layer. A pinned ferromagnetic layer (2nd FM pinned) over the non-magnetic conductor spacer layer and a pinning material layer over the pinned ferromagnetic layer. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter -SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment is a pinned FM layer comprised of a three layer structure of an lower AP layer, a spacer layer (e.g., Ru) and an upper AP layer.
摘要:
A method for forming a giant magnetoresistive (GMR) sensor element, and a giant magnetoresistive (GMR) sensor element formed in accord with the method. In accord with the method, there is first provided a substrate. There is then formed over the substrate a seed layer formed of a magnetoresistive (MR) resistivity sensitivity enhancing material selected from the group consisting or nickel-chromium alloys and nickel-iron-chromium alloys. There is then formed over the seed layer a nickel oxide material layer. Finally, there is then formed over the nickel oxide material layer a free ferromagnetic layer separated from a pinned ferromagnetic layer in turn formed thereover by a non-magnetic conductor spacer layer, where the pinned ferromagnetic layer in turn has a pinning material layer formed thereover. The method contemplates a giant magnetoresistive (GMR) sensor element formed in accord with the method. The nickel oxide material layer provides the giant magnetoresistive (GMR) sensor element with an enhanced magnetoresistive (MR) resistivity sensitivity.
摘要:
A method for forming a longitudinally magnetically biased dual stripe magnetoresistive (DSMR) sensor element comprises forming a first patterned magnetoresistive (MR) layer. Contact the opposite ends of the patterned magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer, each of the stacks including a first Anti-Ferro-Magnetic (AFM) layer and a first lead layer. Then anneal the device in the presence of a longitudinal external magnetic field. Next, form a second patterned magnetoresistive (MR) layer above the previous structure. Contact the opposite ends of the second patterned magnetoresistive (MR) layer with a second pair of stacks defining a second track width of the second patterned magnetoresistive (MR) layer. Each of the second pair of stacks includes spacer layer composed of a metal, a Ferro-Magnetic (FM) layer, a second Anti-Ferro-Magnetic (AFM) layer and a second lead layer. Then anneal the device in the presence of a second longitudinal external magnetic field.
摘要:
A longitudinally magnetically biased dual stripe magnetoresistive (DSMR) sensor element comprises a first patterned magnetoresistive (MR) layer. There are contacts at the opposite ends of the patterned magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer with a first pair of stacks defining a track width of the first magnetoresistive (MR) layer, each of the stacks including a first Anti-Ferro-Magnetic (AFM) layer and a first lead layer. With the first MR layer in place the device was annealed in the presence of a longitudinal external magnetic field. A second patterned magnetoresistive (MR) layer was formed above the previous structure. There are contacts at the opposite ends of the second patterned magnetoresistive (MR) layer with a second pair of stacks defining a second track width of the second patterned magnetoresistive (MR) layer. Each of the second pair of stacks includes spacer layer is composed of a metal, a Ferro-Magnetic (FM) layer, a second Anti-Ferro-Magnetic (AFM) layer and a second lead layer. With the second MR layer in place, the device was annealed in the presence of a second longitudinal external magnetic field.
摘要:
A method for forming a magnetoresistive (MR) sensor element. There is first provided a substrate. There is then formed over the substrate a seed layer. There is then formed contacting a pair of opposite ends of the seed layer a pair of patterned conductor lead layer structures. There is then etched, while employing an ion etch method, the seed layer and the pair of patterned conductor lead layer structures to form an ion etched seed layer and a pair of ion etched patterned conductor lead layer structures. Finally, there is then formed upon the ion etched seed layer and the pair of ion etched patterned conductor lead layers structures a magnetoresistive (MR) layered structure. Within the magnetoresistive (MR) sensor element, the pair of patterned conductor lead layer structures may be formed within a pair of recesses within an ion etch recessed dielectric isolation layer.
摘要:
A method to form a passivation layer using an electrochemical process over a MR Sensor so that the passivation layer defines the MR track width. The passivation layer is formed by anodizing the MR sensor. The passivation layer is an electrical insulator (preventing Sensor current (I) from shunting through the overspray) and a heat conductor to allow MR heat to dissipate away from the MR sensor through the overspray. The method comprises: forming a passivation layer on the MR sensor; the passivation layer formed using an electrochemical process. Then we spinning-on and printing a lift-off photoresist structure over the passivation layer. The passivation layer is etched to remove the passivation layer not covered by the lift-off structure thereby defining a track width of the MR sensor. Then we deposit a lead layer over the passivation layer and MR sensor. The lift-off structure is removed where by the passivation layer defines a track width. The passivation layer is an electrical insulator that prevents sensor current (I) form shunting through overspray layers while allowing heat to dissipate through to the lead layer.
摘要:
A method to form a passivation layer over a MR Sensor so that the passivation layer defines the track width. The passivation layer is formed simultaneously with the development of the lift off structure in a novel developing/oxidizing solution that oxidizes the MR sensor and develops the photoresist. The passivation layer is an electrical insulator that prevents sensor current from shunting through the overspray of the leads and a heat conductor to allow MR heat to dissipate through the overspray. The method comprises: spinning-on and printing a lift-off photoresist structure over the MR sensor. Next, the lift-off photoresist structure is developed. The MR sensor is anodized in a developing/oxidizing solution to: (1) remove portions of the lower photoresist and (2) to form a (e.g., thin NiFeO) passivation layer on the MR layer at least partially under the upper photoresist layer. The passivation layer is etched to remove the passivation layer not covered by the lift-off structure. Then, a lead layer is deposited over the passivation layer and MR sensor. The lift-off structure is removed.
摘要:
A method for forming an anisotropic magnetoresistive (MR) sensor element, and the anisotropic magnetoresistive (MR) sensor element formed in accord with the method. In accord with the method, there is first provided a substrate. There is then formed over the substrate a seed layer formed of a magnetoresistive (MR) resistivity sensitivity enhancing material selected from the group consisting or nickel-chromium alloys and nickel-iron-chromium alloys. There is then formed over the seed layer a nickel oxide material layer. Finally, there is then formed over the nickel oxide material layer a magnetoresistive (MR) layer. The method contemplates the anisotropic magnetoresistive (MR) sensor element formed in accord with the method. The nickel oxide material layer provides the anisotropic magnetoresistive (MR) sensor element with an enhanced magnetoresistive (MR) resistivity sensitivity.
摘要:
A merged read/write magnetic recording head comprises a low magnetic moment first magnetic shield layer over a substrate. A read gap layer with a magnetoresistive head is formed over the first shield layer. A shared pole comprises a low magnetic moment second magnetic shield layer plated on a sputtered seed PLM layer over the read gap layer, a non-magnetic layer plated over the PLM layer and a HMM lower pole layer plated over the second magnetic shield layer. A write gap layer is formed over the first high magnetic moment pole layer of the shared pole. An upper pole comprises a high magnetic moment pole layer over the write gap layer.