Abstract:
An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
Abstract:
A single-stage 1×5 grating-assisted wavelength division multiplexer is provided. A grating-assisted asymmetric Mach-Zehnder interferometer, a plurality of grating-assisted cross-state directional couplers and a plurality of novel side-band eliminators are combined to form the multiplexer. Only general gratings are required, not Bragg grating, for 5-channel wavelength division multiplexing in a single stage. A nearly ideal square-like band-pass filtering passband is obtained. The present disclosure can be used as a core device in IC-to-IC optical interconnects for multiplexing and demultiplexing of an optical transceiver. The present disclosure has a small size and good performance.
Abstract:
A method for fabricating an integrated AC LED module comprises steps: forming a junction layer on a substrate, and defining a first growth area and a second growth area on the junction layer; respectively growing a Schottky diode and a LED on the first growth area and the second growth area; forming a passivation layer and a metallic layer on the Schottky diode, the LED and the substrate. Thereby, the Schottky diode is electrically connected with the LED via the metallic layer. Thus is promoted the reliability of electric connection of diodes, reduced the layout area of the module, and decreased the fabrication cost.
Abstract:
The present invention discloses a light emitting diode (LED) element and a method for fabricating the same, which can promote light extraction efficiency of LED, wherein a substrate is etched to obtain basins with inclined natural crystal planes, and an LED epitaxial structure is selectively formed inside the basin. Thereby, an LED element having several inclines is obtained. Via the inclines, the probability of total internal reflection is reduced, and the light extraction efficiency of LED is promoted.
Abstract:
An integrated circuit structure includes a substrate and a first and a second plurality of III-V semiconductor layers. The first plurality of III-V semiconductor layers includes a first bottom barrier over the substrate; a first channel layer over the first bottom barrier; and a first top barrier over the first channel layer. A first field-effect transistor (FET) includes a first channel region, which includes a portion of the first channel layer. The second plurality of III-V semiconductor layers is over the first plurality of III-V semiconductor layers and includes a second bottom barrier; a second channel layer over the second bottom barrier; and a second top barrier over the second channel layer. A second FET includes a second channel region, which includes a portion of the second channel layer.
Abstract:
The present invention discloses a light emitting diode structure and a method for fabricating the same. In the present invention, a substrate is placed in a solution to form a chemical reaction layer. Next, the substrate is etched to form a plurality of concave zones and a plurality of convex zones with the chemical reaction layer overhead. Next, the chemical reaction layer is removed to form an irregular geometry of the concave zones and convex zones on the surface of the substrate. Then, a semiconductor light emitting structure is epitaxially formed on the surface of the substrate. Thereby, the present invention can achieve a light emitting diode structure having improved internal and external quantum efficiencies.
Abstract:
A light-emitting device comprising a light-emitting unit including a plurality of first connecting pads, a base substrate including a plurality of second connecting pads, and a plurality of conductive bumps that connect the first connecting pads of the light-emitting unit to the second connecting pads of the base substrate. In the manufacturing process, a reflow process is performed to bond the conductive bumps to the first and second connecting pads. The light-emitting unit is configured to emit a first light radiation upon the application of an electric current flow, and the base substrate is configured to emit a second light radiation when stimulated by the first light radiation.
Abstract:
A GaN based substrate is obtained with a simple etching. The GaN based substrate is separate from another base substrate with the etching. The whole process is easy and costs low. The substrate is made of a material having a matching lattice length for a lattice structure so that the substrate has good characteristics. And the GaN based substrate has good heat dissipation so that the stability and life-time of GaN based devices on the GaN based substrate are enhanced even when they are constantly operated under a high power.
Abstract:
A light-emitting device comprises a multi-layer structure including one or more active layer configured to irradiate light in response to the application of an electric signal, a transparent passivation layer laid over an outmost surface of the multi-layer stack, a reflector layer laid over the passivation layer, and a plurality of electrode pads coupled with the multi-layer structure. In a manufacture process of the light-emitting device, the reflector layer and the passivation layer are patterned to form at least one opening exposing an area of the multi-layer structure. One electrode pad is formed through the opening of the reflector layer and the passivation layer to connect with the multi-layer structure
Abstract:
A preparation for forming a thin film capacitor includes forming an amorphous ferroelectric film, such as barium strontium titanate [(Ba,Sr)TiO3] film, for use as an interface between a metal electrode and a polycrystalline ferroelectric film, such as (Ba,Sr) TiO3 film. The polycrystalline ferroelectric film serves as a dielectric layer of the thin film capacitor in view of the fact that the polycrystalline ferroelectric film has a high dielectric constant. The amorphous ferroelectric film serves as a buffer layer for inhibiting the leakage current of the thin film capacitor. The amorphous ferroelectric film is grown by sputtering and by introducing a working gas, such as argon, and a reactive gas, such as oxygen, into a reaction chamber in which a plasma is generated at room temperature.