摘要:
Example embodiments may provide fine patterns for semiconductor devices and methods of forming fine patterns for semiconductor devices. Example methods may include forming a spacer pattern on a substrate and/or an insulating layer pattern adjacent to sides of the spacer pattern and/or disposed at the same level as the spacer pattern, forming a pair of recesses exposing sides of the spacer pattern by removing a portion of the insulating layer pattern, and/or filling a conductive material in the recesses.
摘要:
Example embodiments may provide fine patterns for semiconductor devices and methods of forming fine patterns for semiconductor devices. Example methods may include forming a spacer pattern on a substrate and/or an insulating layer pattern adjacent to sides of the spacer pattern and/or disposed at the same level as the spacer pattern, forming a pair of recesses exposing sides of the spacer pattern by removing a portion of the insulating layer pattern, and/or filling a conductive material in the recesses.
摘要:
Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
摘要:
Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
摘要:
Example embodiments disclose an image sensor capable of preventing or reducing image lag and a method of manufacturing the same. Example methods may include forming a gate insulating film and a gate conductive film doped with a first-conductive-type dopant on a semiconductor substrate; forming a transfer gate pattern by patterning the gate insulating film and the gate conductive film; and fabricating a transfer gate electrode by forming a first-conductive-type photodiode in the semiconductor substrate adjacent to one region of the transfer gate pattern, by forming a second-conductive-type photodiode on the first-conductive-type photodiode, and by forming a first-conductive-type floating diffusion region in the semiconductor substrate adjacent to the other region of the transfer gate pattern.
摘要:
The present invention relates to a microorganism having L-tryptophan productivity and a method for producing L-tryptophan using the same. More precisely, the present invention relates to the recombinant E. coli strain CJ600 (KCCM 10812P) having tryptophan productivity produced from the mutant form (KFCC 10066) of E. coli having L-phenylalanine productivity, wherein tryptophan auxotrophy is released, L-phenylalanine biosynthesis is blocked but tryptophan productivity is enhanced by reinforcing the gene involved in tryptophan biosynthesis, and a method of producing L-tryptophan using the same.
摘要:
The present invention relates to a microorganism of Corynebacterium genus having enhanced L-lysine productivity and a method of producing L-lysine using the same. More particularly, the present invention relates to a recombinant microorganism of Corynebacterium genus having enhanced L-lysine productivity by inactivating endogenous NCgI 1090 gene having the amino acid sequence containing repeated aspartate residues and a method of producing L-lysine using the same.
摘要:
Provided are mutant strains derived from Escherichia sp. GPU1114 (Accession No. KCCM-10536), having cumulative inactivation of deoD, aphA, appA, and hprt genes, and methods of using the same.
摘要:
A fuse area structure in a semiconductor device and a method of forming the same are provided. A ring-shaped guard ring which surrounds a fuse opening, for preventing moisture from seeping into the side surface of the exposed fuse opening, is included. The guard ring is integrally formed with a passivation film. In order to form the guard ring, a guard ring opening etching stop film is formed on a fuse line. A guard ring opening is formed using the etching stop film, and a contact hole is formed in a peripheral circuit. A conductive material layer for forming an upper interconnection layer is formed on the entire surface of a resultant structure on which the contact hole and the guard ring opening are formed. The conductive material layer formed on the guard ring opening is removed. The exposed etching stop film is removed. Finally, a passivation film is deposited on the entire surface of the resulting structure. Accordingly, the guard ring formed of the passivation film filling the guard ring opening is formed. It is possible to form the guard ring without an additional process, to thus effectively prevent moisture from seeping into interfaces between interlayer dielectric films. Also, an additional photolithography process for forming the guard ring is not necessary since the guard ring opening and the contact hole in the peripheral circuit are simultaneously formed.
摘要:
The present invention relates to a method for producing L-methionine and organic acid comprising the following steps: Step 1) preparing a strain producing L-methionine precursor and producing L-methionine precursor by the fermentation of the strain; Step 2) producing L-methionine and organic acid by the enzyme reaction process with the L-methionine precursor as a substrate, and microorganism strains used in each step.