摘要:
The invention provides a method of manufacturing a composite wafer structure. In particular, the method, according to the invention, is based on the fracture mechanics theory to actively control fracture induced during the manufacture of the composite wafer structure and to further protect from undesired edge damage. Thereby, the method, according to the invention, can enhance the yield rate of industrial mass production regarding the composite wafer structure.
摘要:
The invention provides a method of manufacturing a composite wafer structure. In particular, the method, according to the invention, is based on the fracture mechanics theory to actively control fracture induced during the manufacture of the composite wafer structure and to further protect from undesired edge damage. Thereby, the method, according to the invention, can enhance the yield rate of industrial mass production regarding the composite wafer structure.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
A crystalline silicon ingot and a method of fabricating the same are provided. The method utilizes a nucleation promotion layer to facilitate a plurality of silicon grains to nucleate on the nucleation promotion layer from a silicon melt and grow in a vertical direction into silicon grains until the silicon melt is completely solidified. The increment rate of defect density in the silicon ingot along the vertical direction has a range of 0.01%/mm˜10%/mm.
摘要:
A crystalline silicon ingot and a method of fabricating the same are disclosed. The crystalline silicon ingot of the invention includes multiple silicon crystal grains growing in a vertical direction of the crystalline silicon ingot. The crystalline silicon ingot has a bottom with a silicon crystal grain having a first average crystal grain size of less than about 12 mm. The crystalline silicon ingot has an upper portion, which is about 250 mm away from said bottom, with a silicon crystal grain having a second average crystal grain size of greater than about 14 mm.
摘要:
An approach is provided for a method to manufacture a crystalline silicon ingot. The method comprises providing a mold formed for melting and cooling a silicon feedstock by using a directional solidification process, disposing a barrier layer inside the mold, disposing one or more silicon crystal seeds on the barrier layer, loading the silicon feedstock on the silicon crystal seeds, heating the mold to obtain a silicon melt, and cooling the mold by the directional solidification process to solidify the silicon melt into a silicon ingot. The mold is heated until the silicon feedstock is fully melted and the silicon crystal seeds are at least partially melted.
摘要:
A crystalline silicon ingot and a method of manufacturing the same are provided. Using a crystalline silicon seed layer, the crystalline silicon ingot is formed by a directional solidification process. The crystalline silicon seed layer is formed of multiple primary monocrystalline silicon seeds and multiple secondary monocrystalline silicon seeds. Each of the primary monocrystalline silicon seeds has a first crystal orientation different from (100). Each of the secondary monocrystalline silicon seeds has a second crystal orientation different from the first crystal orientation. Each of the primary monocrystalline silicon seeds is adjacent to at least one of the secondary monocrystalline silicon seeds, and separate from the others of the primary monocrystalline silicon seeds.
摘要:
A method for preparing a barium-ferrite-coated, needle-shaped .gamma.-Fe.sub.2 O.sub.3 magnetic powder of better properties is provided. The method includes the following steps of a) letting an iron-containing solution undergo a reaction to precipitate a needle-shaped .alpha.-FeOOH phase powder, b) mixing said .alpha.-FeOOH powder into a barium-containing solution in a predetermined Fe/Ba ratio, c) filtering without washing the precipitated powder, and d) subjecting the precipitated powder to heat treatments including calcination, reduction and oxidation.
摘要:
The present invention is a structure of liquid cooled waterblock with thermal conductivities. More specifically, it is used in a waterblock, which is employed by the liquid cooled thermal dissipation system of chip on the computer's main unit. The waterblock includes an upper cover and a body, in which multiple thermal conductivities are provided at the upper and lower sides of the upper cover to conduct thermal radiation. The lower conductivities are setted at the containing slot inside the body such that not only turbulent flow of liquid in the waterblock is formed, but the thermal generated by the chip is conducted to the upper cover and dissipated by the fan as well. Simultaneously, part of the thermal is conducted from the thermal conductivities to liquid, and then brought to the radiator through the circulating flow of liquid to perform thermal radiation.
摘要:
The structure for heat dissipation in a portable computer according the present invention is a structural design that provides an additional heat dissipation room in the main containing space inside the notebook computer, and provides heat dissipation module in the heat dissipation room, such that the efficiency of heat dissipation is raised. The heat dissipation module includes a heat conductor, a fan, and a heat dissipation plate. Besides, air inlet and air outlet are provided in the heat dissipation room to enable air convection during heat exchange, and accordingly ameliorate the drawback of insufficient heat dissipation in a conventional structure.