摘要:
An ESD protection device. A first-type well is formed on an insulating layer. First and second second-type doped regions are formed on the first-type well. A first body-tie region is formed on the first-type well and is connected to one side of the first and the second second-type doped regions. A polysilicon gate layer is formed on the first-type well and the body-tie region, and is located between the first and the second second-type doped regions. The first first-type doped region is connected to the first body-tie region. The second first-type doped region is formed on the first-type well.
摘要:
Embodiments of the invention relate to an electrostatic discharge (ESD) device and method for forming an ESD device. An embodiment is an ESD protection device comprising a p well disposed in a substrate, an n well disposed in the substrate, a high voltage n well (HVNW) disposed between the p well and the n well in the substrate, a source n+ region disposed in the p well, and a plurality of drain n+ regions disposed in the n well.
摘要:
An integrated circuit includes at least one transistor over a substrate. A first guard ring is disposed around the at least one transistor. The first guard ring has a first type dopant. A second guard ring is disposed around the first guard ring. The second guard ring has a second type dopant. A first doped region is disposed adjacent to the first guard ring. The first doped region has the second type dopant. A second doped region is disposed adjacent to the second guard ring. The second doped region has the first type dopant. The first guard ring, the second guard ring, the first doped region, and the second doped region are capable of being operable as a first silicon controlled rectifier (SCR) to substantially release an electrostatic discharge (ESD).
摘要:
An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
摘要:
An electrostatic discharge (ESD) protection circuit includes a buried oxide layer; a semiconductor layer on the buried oxide layer; and a first and a second MOS device. The first MOS device includes a first gate over the semiconductor layer; a first well region having a portion underlying the first gate; and a first source region and a first drain region in the semiconductor layer. The second MOS device includes a second gate over the semiconductor layer; and a second well region having a portion underlying the first gate. The second well region is connected to a discharging node. The first well region is connected to the discharging node through the second well region, and is not directly connected to the discharging node. The second MOS device further includes a second source region and a second drain region in the semiconductor layer and adjoining the second well region.
摘要:
The invention describes a structure and a process for providing ESD semiconductor protection with reduced input capacitance. The structure consists of heavily doped P+ guard rings surrounding the I/O ESD protection device and the Vcc to Bss protection device. In addition, there is a heavily doped N+ guard ring surrounding the I/O protection device its P+ guard ring. The guard rings enhance structure diode elements providing enhanced ESD energy discharge path capability enabling the elimination of a specific conventional Vss to I/O pad ESD protection device. This reduces the capacitance seen by the I/O circuit while still providing adequate ESD protection for the active circuit devices.
摘要:
Provided are an electrostatic discharge (ESD) protection device and a method for making such a device. In one example, the ESD protection device includes a Zener diode region formed in a substrate and an N-type metal oxide semiconductor (NMOS) device formed adjacent to the Zener diode region. The Zener diode region has two doped regions, a gate with a grounded potential positioned between the two doped regions, and two light doped drain (LDD) features formed in the substrate. One of the LDD features is positioned between each of the two doped regions and the gate. The NMOS device includes a source and a drain formed in the substrate and a second gate positioned between the source and the drain.
摘要:
A semiconductor device formed in a semiconductor substrate for dissipating electrostatic discharge and/or accumulated charge in an integrated circuit is provided. In one embodiment, the device comprises a semiconductor substrate; a plurality of layers of metal lines formed overlying the substrate; a plurality of via plugs through intermetal dielectric layers between the layers of metal lines and wherein the via plugs interconnect the metal lines; and a dummy pad formed over the plurality of layers of metal lines, the dummy pad having a diode connected thereto and to ground for providing a discharge path for the electrostatic discharge and/or accumulated charge.
摘要:
An electrostatic discharge (ESD) protection structure and a method for forming the same are provided. The structure includes a substrate having a buried layer, and a first and a second high-voltage well region on the buried layer. The first and second high-voltage well regions have opposite conductivity types and physically contact each other. The structure further includes a field region extending from the first high-voltage well region into the second high-voltage well region, a first doped region in the first high-voltage well region and physically contacting the field region, and a second doped region in the second high-voltage well region and physically contacting the field region. The first and second doped regions and the first high-voltage well region form a bipolar transistor that can protect an integrated circuit from ESD.
摘要:
An ESD protection circuit is implemented for a semiconductor device having a first circuit system operating with a first power supply voltage and a first complementary power supply voltage, and a second circuit system operating with a second power supply voltage and a second complementary power supply voltage. The ESD protection circuit includes a first diode having an anode coupled to the first power supply voltage and a cathode coupled to a first node connecting the first circuit system and the second circuit system for preventing a crosstalk of current between the first power supply voltage and the second complementary power supply voltage. A first MOS transistor module is coupled between the first node and the first complementary power supply for selectively creating a current path from the first node to the first complementary supply voltage for dissipating an ESD current during an ESD event.