Abstract:
A first atmospheric plasma producing nozzle is used to direct a gas-borne stream of plasma heated and activated particles of lithium battery electrode material for deposition on a surface of lithium cell member, such as a separator or current collector foil. A second atmospheric plasma producing nozzle is used to direct a gas-borne stream of plasma heated and activated metal particles at the same surface area being coated with the stream of electrode material particles. The two plasma streams are combined at the cell member surface to form a layer of electrically-conductive metal-bonded particles of electrode material. The use of multiple atmospheric plasma streams is useful in making thin, efficient, and lower cost electrode structures for lithium batteries.
Abstract:
A battery and supercapacitor system of a vehicle includes a lithium ion battery (LIB) having first and second electrodes, and a supercapacitor having third and fourth electrodes. A first reference electrode is disposed between the first and second electrodes and is configured to measure a first potential at a location between the first and second electrodes. A second reference electrode is disposed between the third and fourth electrodes and is configured to measure a second potential at a location between the third and fourth electrodes. The first electrode may be connected to the third electrode, and the second electrode may be connected to the fourth electrode. The first and second reference electrodes may not be connected to any of the first, second, third, or fourth electrodes.
Abstract:
A battery and supercapacitor system of a vehicle includes a lithium ion battery (LIB) disposed within a housing. The LIB includes: an electrolyte including lithium; and first and second electrodes disposed in the electrolyte. A supercapacitor is disposed within the housing and includes: the electrolyte; and third and fourth electrodes disposed in the electrolyte.
Abstract:
At least one of the anode and cathode of a lithium-ion processing electrochemical cell are prepared with a layer of mixed partides of both active lithium battery electrode materials and lithium ion adsorbing capacitor materials, or with co-extensive, contiguous layers of battery electrode particles in one layer and capacitor particles in the adjoining layer. The proportions of active battery electrode particles and active capacitor particles in one or both of the electrodes are predetermined to provide specified energy density (Wh/kg) and power density (W/kg) properties of the cell for its intended application.
Abstract:
The present disclosure provides an electrochemical device that may include a stack having at least one electrochemical cell having a first electrode, a second electrode, a porous separator, and an electrolyte liquid disposed in the porous separator and optionally disposed in the first electrode, the second electrode, or both the first electrode and the second electrode. The stack has a first volume of electrolyte liquid. The electrochemical device also has an integrated storage region that stores a second volume of electrolyte liquid and is in fluid communication with the plurality of electrochemical cells and is configured to transfer the electrolyte liquid into the plurality of electrochemical cells, wherein the second volume of electrolyte liquid is at least about 3% of the first volume. Methods of increasing lifetime of the electrochemical device are also provided.
Abstract:
Electrochemical cells that cycle lithium ions and methods for suppressing or minimizing dendrite formation are provided. The electrochemical cells include a positive electrode, a negative electrode, and a separator sandwiched therebetween. The positive and negative electrodes and separator may each include an electrolyte system comprising one or more lithium salts, one or more solvents, and one or more complexing agents. The one or more complexing agents binds to metal contaminants found within the electrochemical cell to form metal ion complex compounds that minimize or suppress formation of dendrite protrusions on the negative electrode at least by increasing the horizontal area (e.g., decreasing the height) of any dendrite formation.
Abstract:
Atmospheric plasma spray devices and methods are used in the making of the electrodes for both a lithium-ion battery and a lithium-ion utilizing capacitor structure, which are to be placed in a common container and infiltrated with a common lithium-ion transporting, liquid electrolyte. The lithium-ion-utilizing capacitor and lithium-ion cell battery are combined such that the respective electrodes may be electrically connected, either in series or parallel connection for in energy storage and management in an automotive vehicle or other electrical power supply application.
Abstract:
A copper foil, intended for use as a current collector in a lithium-containing electrode for a lithium-based electrochemical cell, is subjected to a series of chemical oxidation and reduction processing steps to form a field of integral copper wires extending outwardly from the surfaces of the current collector (and from the copper content of the foil) to be coated with a resin-bonded porous layer of particles of active electrode material. The copper wires serve to anchor thicker layers of porous electrode material and enhance liquid electrolyte contact with the electrode particles and the current collector to improve the energy output of the cell and its useful life.
Abstract:
An electrolyte can be pretreated by contacting with an oxide species (e.g., SiO2, SiOx, where 1≤x≤2, TiO2). The electrolyte comprises LiPF6 and a carbonate solvent. A reaction occurs to form a pretreated electrolyte comprising a compound selected from the group consisting of: MaPx′OyFz, MaPx′OyFzCnHm, and combinations thereof, where when P in the formula is normalized to 1 so that x′ is equal to about 1, 0
Abstract:
Methods of pretreating an electroactive material comprising lithium titanate oxide (LTO) include contacting a surface of the electroactive material with a pretreatment composition. In one variation, the pretreatment composition includes a salt of lithium fluoride salt selected from the group consisting of: lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), and combinations thereof, and a solvent. In another variation, the pretreatment composition includes an organophosphorus compound. In this manner, a protective surface coating forms on the surface of the electroactive material. The protective surface coating comprises fluorine, oxygen, phosphorus or boron, as well as optional elements such as carbon, hydrogen, and listed metals, and combinations thereof.