Abstract:
A thin film transistor includes an insulating substrate; a polysilicon pattern formed on the insulating substrate; a first nitride layer disposed on a channel portion of the polysilicon pattern; heavily doped semiconductor layer regions disposed in upper portions of the polysilicon pattern on sides of the first nitride layer pattern; an interlevel insulating layer disposed on the insulating substrate, the polysilicon pattern, the first nitride layer and the heavily doped semiconductor layer regions, the interlevel insulating layer having a contact hole to expose a portion of the heavily doped semiconductor layer; source and drain electrodes connected to the heavily doped semiconductor layer regions through the contact hole; and a gate electrode formed on the interlevel insulating layer disposed on the first nitride layer.
Abstract:
A method of fabricating a thin film transistor includes the steps of forming an active layer on an insulating substrate; forming an insulating layer and a first metal layer on the active layer; forming a photoresist pattern for forming a gate electrode on the metal layer; etching the metal layer and the insulating layer by using the photoresist pattern as a mask, and respectively forming a gate electrode and a gate insulating layer to expose a part of the active layer; forming an amorphous silicon layer on the resultant whole surface of the substrate; forming a second metal layer on the amorphous silicon layer; patterning the second metal layer and the amorphous silicon layer by a photolithographic process to form an offset layer and a source/drain electrode; and carrying out a lift-off process to remove the photoresist pattern, and exposing the surface on the gate electrode.
Abstract:
A method of fabricating a thin film transistor includes the steps of forming an active layer on an insulating substrate; forming an insulating layer and a first metal layer on the active layer; forming a photoresist pattern for forming a gate electrode on the metal layer; etching the metal layer and the insulating layer by using the photoresist pattern as a mask, and respectively forming a gate electrode and a gate insulating layer to expose a part of the active layer; forming an amorphous silicon layer on the resultant whole surface substrate; forming a second metal layer on the amorphous silicon layer; patterning the second metal layer and the amorphous silicon layer by a photolithographic process to form an offset layer and a source/drain electrode; and carrying out a lift-off process to remove the photoresist pattern, and exposing the surface on the gate electrode.
Abstract:
A thin film transistor includes an insulating substrate; a polysilicon pattern formed on the insulating substrate; a first nitride layer disposed on a channel portion of the polysilicon pattern; heavily doped semiconductor layer regions disposed in upper portions of the polysilicon pattern on sides of the first nitride layer pattern; an interlevel insulating layer disposed on the insulating substrate, the polysilicon pattern, the first nitride layer and the heavily doped semiconductor layer regions, the interlevel insulating layer having a contact hole to expose a portion of the heavily doped semiconductor layer; source and drain electrodes connected to the heavily doped semiconductor layer regions through the contact hole; and a gate electrode formed on the interlevel insulating layer disposed on the first nitride layer.
Abstract:
Disclosed is an active pixel sensor array, which can reduce the number of elements and the size of capacitors by enabling a reset switching transistor to include a function of an optical sensor and to reset a pixel voltage with a power supply voltage VDD after a gate selection signal is outputted, and to reset a pixel voltage with a power supply voltage VDD by a coupling function in case that a gate selection signal is outputted. The active pixel image sensor having a gate driving circuit and a column driving circuit includes a pixel composed of a voltage supply unit for supplying a signal voltage to the column driving circuit; a gate selection unit for turning on according to a n+1-th gate selection signal and outputting a voltage based on a difference between a pixel voltage and a threshold voltage of the voltage supply unit; a reset switching unit for turning on according to a n+1-th gate selection signal and resetting the pixel voltage with a power supply voltage VDD; and a storage unit and a coupling unit for coupling so as to initialize the pixel voltage to be lower than the power supply voltage VDD just after the n+1-th gate selection signal is outputted.
Abstract:
Disclosed herein is a method for fabricating a reverse-staggered polycrystalline silicon thin film transistor, and more specifically a method for fabricating a reverse-staggered polycrystalline silicon thin film transistor wherein a phosphosilicate-spin-on-glass (P-SOG) is used for a gate insulating film. The method comprises the steps of: forming a buffer layer on an insulating substrate; forming a gate metal pattern on the buffer layer; forming a planarized gate insulating film on the gate metal pattern; depositing an amorphous silicon layer on the gate insulating film; crystallizing the amorphous silicon layer into a polycrystalline silicon layer; forming a n+ or p+ layer on the polycrystalline silicon layer; forming a source/drain metal layer on the n+ or p+ layer; and forming a passivation layer on the source/drain metal layer.
Abstract:
Methods and apparatus for producing a semiconductor on glass (SiOG) structure include: subjecting an implantation surface of a donor single crystal semiconductor wafer to an ion implantation process to create an exfoliation layer of the donor semiconductor wafer; bonding the implantation surface of the exfoliation layer to a glass substrate using electrolysis; separating the exfoliation layer from the donor semiconductor wafer, thereby exposing a cleaved surface of the exfoliation layer; subjecting the cleaved surface of the exfoliation layer to a dry etching process to produce a single crystal semiconductor layer of about 5-20 nm thickness; and forming a thin film transistor in the thin semiconductor layer.
Abstract:
A drive circuit for organic light emitting diodes (OLEDs), and a method for driving OLEDs, using the drive circuit. The drive circuit includes pixel circuits, each of which includes a first transistor for receiving a data voltage, and outputting a drive current to an OLED, a second transistor for transmitting the data voltage to the first transistor, a third transistor for connecting the gate and drain of the first transistor, a capacitor for storing a gate voltage of the first transistor, and a fourth transistor connected to the drain of the first transistor. The OLED is connected to the source of the first transistor by a fifth transistor, or is directly connected to the source of the first transistor without using the fifth transistor. The drive circuit generates drive current, based on a non-uniformity-compensated threshold voltage of the first transistor, thereby obtaining a uniform luminance of the OLED.
Abstract:
A polymer light emitting diode having an interinsulation layer between a hole injecting layer (or a hole transporting layer) and a light emitting polymer layer, and a method for fabricating the polymer light emitting diode. The polymer light emitting diode having the interinsulation layer includes a hole injecting layer formed on an anode layer, formed on a glass substrate, by coating or printing; the interinsulation layer having a designated thickness formed on the hole injecting layer; a light emitting polymer layer formed on the interinsulation layer by coating or printing; and an electron injecting layer formed on the light emitting polymer layer, and a cathode layer formed on the electron injecting layer.
Abstract:
Disclosed are a method for forming a silicon thin-film on a substrate, and more particularly a method for forming a polycrystalline silicon thin-film of good quality on a flexible metal substrate. A metal substrate (110) is prepared and a surface of the metal substrate (110) is flattened. An insulation film (120) formed on the metal substrate (110). An amorphous silicon layer (130) is formed on the insulation film (120). A metal layer (140) is formed on the amorphous silicon layer (130). A sample on the metal substrate (110) is heated and crystallized.