Abstract:
Disclosed herein is a method for fabricating a reverse-staggered polycrystalline silicon thin film transistor, and more specifically a method for fabricating a reverse-staggered polycrystalline silicon thin film transistor wherein a phosphosilicate-spin-on-glass (P-SOG) is used for a gate insulating film. The method comprises the steps of: forming a buffer layer on an insulating substrate; forming a gate metal pattern on the buffer layer; forming a planarized gate insulating film on the gate metal pattern; depositing an amorphous silicon layer on the gate insulating film; crystallizing the amorphous silicon layer into a polycrystalline silicon layer; forming a n+ or p+ layer on the polycrystalline silicon layer; forming a source/drain metal layer on the n+ or p+ layer; and forming a passivation layer on the source/drain metal layer.
Abstract:
Disclosed herein is a method of crystallizing an amorphous material for use in fabrication of thin film transistors. The method includes forming an amorphous silicon layer on a substrate, depositing a Ni metal layer on part of the amorphous silicon layer, and heat-treating the amorphous silicon layer to cause phase transition of the amorphous silicon, wherein the Ni metal layer is deposited to an average thickness of 0.79 Å or less. The method can crystallize an amorphous material for use in thin film transistors using the metal induced lateral crystallization while restricting thickness and density of Ni, thereby minimizing current leakage in the thin film transistor.
Abstract:
A polycrystalline silicon thin film having grains defined by grain boundaries is provided. The polycrystalline silicon thin film is formed by interposing a cover layer between an amorphous silicon layer and a metal layer to diffuse the metal into the amorphous silicon layer through the cover layer, removing the cover layer, crystallizing the amorphous silicon layer to be changed to a polycrystalline silicon layer, depositing a metal on the polycrystalline silicon layer, and annealing the polycrystalline silicon layer. Specifically, the polycrystalline silicon thin film is formed by sequentially forming an amorphous silicon layer, a cover layer and a metal layer on an insulating substrate, annealing the amorphous silicon layer to be changed to a polycrystalline silicon layer, removing the cover layer, depositing a metal on the polycrystalline silicon layer, followed by annealing so that the average density per unit volume of the metal particles present at the grain boundaries is greater than that of the metal particles present within the grains.
Abstract:
Disclosed is an active pixel sensor array, which can reduce the number of elements and the size of capacitors by enabling a reset switching transistor to include a function of an optical sensor and to reset a pixel voltage with a power supply voltage VDD after a gate selection signal is outputted, and to reset a pixel voltage with a power supply voltage VDD by a coupling function in case that a gate selection signal is outputted. The active pixel image sensor having a gate driving circuit and a column driving circuit includes a pixel composed of a voltage supply unit for supplying a signal voltage to the column driving circuit; a gate selection unit for turning on according to a n+1-th gate selection signal and outputting a voltage based on a difference between a pixel voltage and a threshold voltage of the voltage supply unit; a reset switching unit for turning on according to a n+1-th gate selection signal and resetting the pixel voltage with a power supply voltage VDD; and a storage unit and a coupling unit for coupling so as to initialize the pixel voltage to be lower than the power supply voltage VDD just after the n+1-th gate selection signal is outputted.
Abstract:
Methods and apparatus for producing a semiconductor on glass (SiOG) structure include: subjecting an implantation surface of a donor single crystal semiconductor wafer to an ion implantation process to create an exfoliation layer of the donor semiconductor wafer; bonding the implantation surface of the exfoliation layer to a glass substrate using electrolysis; separating the exfoliation layer from the donor semiconductor wafer, thereby exposing a cleaved surface of the exfoliation layer; subjecting the cleaved surface of the exfoliation layer to a dry etching process to produce a single crystal semiconductor layer of about 5-20 nm thickness; and forming a thin film transistor in the thin semiconductor layer.
Abstract:
A drive circuit for organic light emitting diodes (OLEDs), and a method for driving OLEDs, using the drive circuit. The drive circuit includes pixel circuits, each of which includes a first transistor for receiving a data voltage, and outputting a drive current to an OLED, a second transistor for transmitting the data voltage to the first transistor, a third transistor for connecting the gate and drain of the first transistor, a capacitor for storing a gate voltage of the first transistor, and a fourth transistor connected to the drain of the first transistor. The OLED is connected to the source of the first transistor by a fifth transistor, or is directly connected to the source of the first transistor without using the fifth transistor. The drive circuit generates drive current, based on a non-uniformity-compensated threshold voltage of the first transistor, thereby obtaining a uniform luminance of the OLED.
Abstract:
A polymer light emitting diode having an interinsulation layer between a hole injecting layer (or a hole transporting layer) and a light emitting polymer layer, and a method for fabricating the polymer light emitting diode. The polymer light emitting diode having the interinsulation layer includes a hole injecting layer formed on an anode layer, formed on a glass substrate, by coating or printing; the interinsulation layer having a designated thickness formed on the hole injecting layer; a light emitting polymer layer formed on the interinsulation layer by coating or printing; and an electron injecting layer formed on the light emitting polymer layer, and a cathode layer formed on the electron injecting layer.
Abstract:
Disclosed are a method for forming a silicon thin-film on a substrate, and more particularly a method for forming a polycrystalline silicon thin-film of good quality on a flexible metal substrate. A metal substrate (110) is prepared and a surface of the metal substrate (110) is flattened. An insulation film (120) formed on the metal substrate (110). An amorphous silicon layer (130) is formed on the insulation film (120). A metal layer (140) is formed on the amorphous silicon layer (130). A sample on the metal substrate (110) is heated and crystallized.
Abstract:
There are provided a method of forming carbon nano tubes, a field emission display device having the carbon nanotubes formed using the method, and a method of manufacturing the field emission display device. The method of forming carbon nanotubes includes forming a catalytic metal layer on a substrate, forming an insulation layer on the catalytic metal layer, and forming carbon nanotubes on the insulation layer.
Abstract:
The present invention relates to an image sensor comprising an amorphous silicon thin-film transistor optical sensor which functions as an image sensor used for an X-ray photography device, a fingerprint recognition apparatus, a scanner, etc., and a method of manufacturing the image sensor. Since the thin-film transistor optical sensor according to the present invention has a high-resistance silicon region by disposing an offset region in a channel region, a dark leakage current of the optical sensor remains in a low level even under a high voltage. Therefore, it is possible to apply a high voltage to the thin-film transistor optical sensor according to the present invention so that the image senor can be sensitive to a weak light. In addition, since the storage capacitance in the image sensor is formed in a double structure, the image sensor has a high value of capacitance. Furthermore, since a lower common electrode is electrically connected to an upper common electrode, the image sensor has a stable structure.