摘要:
Si, Al, Al plus TiN, and IrO2 are used as adhesion layers to prevent peeling of noble metal electrodes, such as Pt, from a silicon dioxide (SiO2) substrate in capacitor structures of memory devices.
摘要:
A CMOS device and a method for its fabrication are disclosed. In one embodiment the CMOS device includes an NMOS transistor and a PMOS transistor each of which has silicided source and drain regions and a silicon gate electrode which includes a titanium nitride barrier layer. The NMOS transistor and PMOS transistors are coupled together by a silicon layer which is capped by a layer of titanium nitride barrier material. The source and drain regions are silicided with cobalt or other metal silicide which is prevented from reacting with the silicon gate electrode and interconnect by the presence of the titanium nitride barrier layer.
摘要:
A semiconductor substrate is denuded using a reducing gas mixture including carbon monoxide and carbon dioxide. Use of the reducing gas mixture allows very low oxygen partial pressure to be achieved in a furnace tube during the step of denuding. Oxygen partial pressure lower than 1E-9 atmosphere may be achieved by adjusting the relative ratio of carbon monoxide and carbon dioxide. Precipitates are grown after forming nucleating sites. Both CZ and FZ substrates may use the process, and the process can be used with silicon, germanium, or other semiconductor materials.
摘要:
A method is described for the formation of high purity thin films on a semiconductor substrate. In the preferred embodiment of the invention a thin film is formed on a semiconductor substrate in a plasma enhanced chemical vapor deposition system. Energized silicon ions are obtained by mass analysis and are accelerated into a hydrogen-free plasma. A reaction occurs between energized atoms within the plasma and the energized silicon ions resulting in the deposition of a thin film on the semiconductor substrate.
摘要:
In a method of forming a microelectronic structure of a Pt/BSTO/Pt capacitor stack for use in a DRAM device, the improvement comprising substantially eliminating or preventing oxygen out-diffusion from the BSTO material layer, comprising: a) preparing a bottom Pt electrode formation; b) subjecting the bottom Pt electrode formation to an oxygen plasma treatment to form an oxygen enriched Pt layer on the bottom Pt electrode; c) depositing a BSTO layer on said oxygen enriched Pt layer; d) depositing an upper Pt electrode layer on the BSTO layer; e) subjecting the upper Pt electrode layer to an oxygen plasma treatment to form an oxygen incorporated Pt layer; and f) depositing a Pt layer on the oxygen incorporated Pt layer upper Pt elect.
摘要:
Contaminants are removed from a semiconductor material by heating the semiconductor material to temperature within the range of a minimum temperature where a halogen compound will decompose to halogen atoms without the use of ultraviolet irradiation and react with contaminants present on the semiconductor material and a maximum temperature of 800.degree. C., wherein less than or equal to approximately 50 Angstroms of oxide is formed on the semiconductor material. The ambient in which the semiconductor material is heated is an ambient comprised of a nonreactive gas and a halogen compound for at least a time sufficient to remove a substantial amount of contaminants from the semiconductor material.