摘要:
A system for controlling a motor vehicle includes a first device for determining control data required for controlling the motor vehicle. A second device monitors the first device. The first device determines second data on the basis of first data, pursuant to a test function. The second device determines third data on the basis of the first data, pursuant to the same test function. The first and/or the second device recognizes an error state relevant to safety, dependent upon a comparison between the second data and the third data.
摘要:
The invention is directed to a brake light switch circuit arrangement having an additional switch S.sub.2 which opens upon actuation of the brake pedal 13 but only after a first switch S.sub.1 closes. The signals from the two switches are processed by a gating circuit (16, 17, 18) to produce brake signals (B.sub.S1 and B.sub.S2) which are to provide a standby idle-running idle-setting signal (LL*) and switch off a driving-speed controller (FGR) via the main computer (30) of the electronic diesel control. In the event that the brake switch S.sub.1 becomes defective and remains closed while overtaking another vehicle, the condition is prevented that the EDC does not reduce the injected fuel quantity to the idling quantity, even though the accelerator pedal is depressed. It is also prevented that, in the event of a fault in the brake switch (S.sub.1) while the accelerator pedal is released, constant vehicle velocity control by the EDC is not switched off.
摘要:
In a supervisory system (FIG. 7) for the accelerator pedal transducer (26) in an electronic engine control (EMS) for a vehicle engine, the output signal (U-FFG) of the transducer (26) is interpreted to show whether or not the transducer is at or close to the idling position. The resulting information is compared with the states of idling and pressure switches (18, 28) which shows whether or not the accelerator pedal (30) is actually at or close to its idling position. A contradiction resulting from this comparison indicates a fault and remedial action can be taken by the EMS, for example, to reduce the engine power to a precautionary value. A contradiction between other comparisons shows that one of the switches (18, 28) is faulty. In the event of the accelerator pedal sticking in a depressed position after the driver has lifted his foot and depressed the brake (FIG. 5) a brake signal (BS) can be passed through a gating circuit controlled by the idling switch signal (FFG-LL) to produce a reaction signal(RS). The EMS processes the latter to reduce the engine power to a precautionary safe value.
摘要:
A device for metering urea solutions permitting a reliable reduction of nitrogen oxides in the exhaust gas of an internal combustion engine is provided. This is achieved by the fact that the device for metering the urea solution includes a sensor unit for monitoring one or more physical state variables of an enzyme-free Urea solution.
摘要:
The invention relates to a system for controlling an internal combustion engine (100), in particular a self-igniting internal combustion engine. A signal (U) for triggering a performance-determining final controlling element (105) is stored in a characteristics map (110) for each of a corresponding fuel quantity (QK) to be injected into the engine. The signal values stored in the characteristics map (110) are then corrected in dependence upon a predetermined relationship of a signal corresponding to the value for the fuel quantity (QK) to be injected and a signal corresponding to the value for the actually injected fuel quantity (QKI).
摘要:
In a method for monitoring an exhaust gas limiting value of an internal combustion engine using an engine controller, the engine controller has at least one exhaust gas sensor, and an error signal is output when the exhaust gas limiting value is exceeded. If the emissions predicted for the present driving state are ascertained with the aid of an engine model and compared to the signal of the exhaust gas sensor or a comparison value for the emission derived therefrom, the prescribed driving cycle may be taken into account when certifying a limiting value monitoring system and a defective system may be reliably recognized in practical operation even in atypical driving states without resulting in erroneous triggering of error signals.
摘要:
In the method for monitoring the sensor device (1), which supplies an analog output signal over a bidirectional output line (3) to an analysis unit (2) for evaluation, a predetermined test signal is applied to a sensor output in a monitoring phase, which is received in the analysis unit (2) and evaluated. In order to initiate the monitoring phase at any arbitrary time without the need of an additional connecting line between the sensor device and the analysis unit, a trigger signal of a predetermined trigger level is transmitted by the analysis unit (2) to the sensor device (1) over the output line (3) and is detected in the sensor device, which generates the predetermined test signal and transmits it to the analysis unit (2) over the bidirectional connecting line (3). A sensor device and connected analysis unit designed to perform this method are also described.
摘要:
In a system and method for controlling a solenoid-valve-controlled fuel-metering device, in particular for a diesel gasoline engine, the duration of delivery is determined based upon the speed value during the preceding metering-in operation.
摘要:
A sensor for detecting particles in a gas flow, in particular soot particles in an exhaust gas flow, includes at least two measuring electrodes, which are positioned on a substrate made of an insulating material. To protect the measuring electrodes, they are covered by a protective layer.
摘要:
A method and a device for controlling an internal combustion engine. An actuator serves to influence the quantity of exhaust gas recirculated. A loop controller preselects the quantity of exhaust gas to be recirculated on the basis of a setpoint and an actual value which characterizes the quantity of exhaust gas recirculated. A first measured value is determined in a first position (open) of the actuator, and a second measured value is determined in a second position (closed) of the actuator, with the actual value or a correction value being preselectable on the basis of the difference between the two measured values.