摘要:
A composite substrate has a carrier and a utility layer. The utility layer is attached to the carrier by means of a dielectric bonding layer and the carrier contains a radiation conversion material. Other embodiments relate to a semiconductor chip having such a composite substrate, a method for producing a composite substrate and a method for producing a semiconductor chip with a composite substrate.
摘要:
A method for producing an optoelectronic component is provided. A transfer layer, containing InxGa1-xN with 0 x, is grown onto the previously grown transfer layer, ions are implanted into the further transfer layer to form a separation zone, a further carrier substrate is applied, and the further transfer layer is separated by way of heat treatment. Subsequently, a semiconductor layer sequence, containing an active layer, is grown onto the surface of the further transfer layer facing away from the further carrier substrate.
摘要:
At least two semiconductor components emit electromagnetic radiation in different wavelength ranges. The superimposition of these electromagnetic radiations of all semiconductor components has at least one fraction in the visible wavelength range. At least one of the semiconductor components has a luminescence conversion element in the beam path.
摘要:
A display device and method for its manufacture. In a display device with a first array of individual display elements and a second array of control transistors for the display elements, control transistors are formed from a semiconductor material with a large band gap and are transparent in the visible spectral range. The invention also comprises a method for manufacturing such a display device.
摘要:
A method for producing a plurality of semiconductor chips, particularly radiation-emitting semiconductor chips, each having at least one epitaxially produced functional semiconductor layer stack, comprising the following method steps: preparing a growth substrate wafer (1) substantially comprised of semiconductor material from a semiconductor material system that is with respect to lattice parameters the same as or similar to that on which a semiconductor layer sequence for the functional semiconductor layer stack is based, forming in the growth substrate wafer (1) a separation zone (4) disposed parallel to a main face (100) of the growth substrate wafer (1), joining the growth substrate wafer (1) to an auxiliary carrier wafer (2), detaching along the separation zone (4) a portion (11) of the growth substrate wafer (1) that faces away from the auxiliary carrier wafer (2) as viewed from the separation zone (4), forming on the portion (12) of the growth substrate wafer remaining on the auxiliary carrier wafer (2) a growth surface for subsequent epitaxial growth of a semiconductor layer sequence, epitaxially growing the semiconductor layer sequence (5) on the growth surface, applying a chip substrate wafer to the semiconductor layer sequence, detaching the auxiliary carrier wafer (2), and singulating the composite composed of the semiconductor layer sequence and the chip substrate wafer (7) into mutually separate semiconductor chips.
摘要:
A display device and method for its manufacture. In a display device with a first array of individual display elements and a second array of control transistors for the display elements, control transistors are formed from a semiconductor material with a large band gap and are transparent in the visible spectral range. The invention also comprises a method for manufacturing such a display device.
摘要:
At least two semiconductor components emit electromagnetic radiation in different wavelength ranges. The superimposition of these electromagnetic radiations of all semiconductor components has at least one fraction in the visible wavelength range. At least one of the semiconductor components has a luminescence conversion element in the beam path.
摘要:
A method for producing a plurality of semiconductor chips, particularly radiation-emitting semiconductor chips, each having at least one epitaxially produced functional semiconductor layer stack, comprising the following method steps: preparing a growth substrate wafer (1) substantially comprised of semiconductor material from a semiconductor material system that is with respect to lattice parameters the same as or similar to that on which a semiconductor layer sequence for the functional semiconductor layer stack is based, forming in the growth substrate wafer (1) a separation zone (4) disposed parallel to a main face (100) of the growth substrate wafer (1), joining the growth substrate wafer (1) to an auxiliary carrier wafer (2), detaching along the separation zone (4) a portion (11) of the growth substrate wafer (1) that faces away from the auxiliary carrier wafer (2) as viewed from the separation zone (4), forming on the portion (12) of the growth substrate wafer remaining on the auxiliary carrier wafer (2) a growth surface for subsequent epitaxial growth of a semiconductor layer sequence, epitaxially growing the semiconductor layer sequence (5) on the growth surface, applying a chip substrate wafer to the semiconductor layer sequence, detaching the auxiliary carrier wafer (2), and singulating the composite composed of the semiconductor layer sequence and the chip substrate wafer (7) into mutually separate semiconductor chips.
摘要:
The deposition of material (3) on a growth area (4) may be highly temperature-sensitive. In order to reduce temperature inhomogeneities on the growth area (4) of a substrate wafer (1), a thermal radiation absorption layer (2) is applied on a rear side (5) of the substrate wafer (1) lying opposite to the growth area (4). The thermal radiation absorption layer (2) exhibits good radiation absorption in the spectral range of a heating source. Since the deposition of semiconductor materials, in particular AllnGaN, may lead to (depending on the deposition temperature) different emission wavelengths of the deposited material, the use of a thermal radiation absorption layer (2) may produce a narrower emission wavelength distribution of the deposited material (3).