摘要:
A method for delineating a metallization pattern in a layer of sputtered aluminum or sputtered copper using a broad spectrum high intensity light source. The metal is deposited on a polymeric substrate by sputtering, so that it has a porous nanostructure. An opaque mask that is a positive representation of the desired metallization pattern is then situated over the metallization layer, exposing those portions of the metallization layer intended to be removed. The masked metallization layer is then exposed to a rapid burst of high intensity visible light from an arc source sufficient to cause complete removal of the exposed portions of the metallization layer, exposing the underlying substrate and creating the delineated pattern.
摘要:
A method and apparatus for forming controlled stress fractures in metal produces electrically isolated, closely spaced circuit sub-entities for use on a metallized printed wiring board. A polymeric substrate has a layer of metal adhered to the surface, and the metal layer is formed into entities. Each entity has a fracture initiating feature formed into it, which serves to initiate and/or direct a stress crack that is induced in the metal. The entities are fractured in a controlled manner by subjecting the substrate and the entities to mechanical stress by a rapid thermal excursion, creating a stress fracture in the entity extending from the fracture initiating feature. The stress fracture divides each entity into two or more sub-entities that are electrically isolated from each other by the stress fracture. The resulting structure can be used to form circuitry requiring very fine spaces for high density printed circuit boards. The rapid thermal stress may be induced by a high intensity, strobed xenon arc lamp.
摘要:
A method for delineating a metallization pattern in a layer of sputtered aluminum or sputtered copper using a broad spectrum high intensity light source. The metal is deposited on a polymeric substrate by sputtering, so that it has a porous nanostructure. An opaque mask that is a positive representation of the desired metallization pattern is then situated over the metallization layer, exposing those portions of the metallization layer intended to be removed. The masked metallization layer is then exposed to a rapid burst of high intensity visible light from an arc source sufficient to cause complete removal of the exposed portions of the metallization layer, exposing the underlying substrate and creating the delineated pattern.
摘要:
A protective photochromic barrier film for a light-sensitive printed electronic substrate. Light-sensitive semiconductor devices on a dielectric substrate are electrically connected by conductors. A barrier layer containing photochromic dyes covers some or all of the light-sensitive semiconductor devices. Upon exposure to visible, infrared, or ultraviolet light, the photochromic dyes change chemical structure and decrease the amount of visible or non-visible light that can impinge upon the light-sensitive electronic devices. Upon removal of the visible or non-visible light, the photochromic dyes either revert to their original structure or maintain their altered state.
摘要:
A printed electronic device and methods for determining the electrical value of the device. A dielectric material is contact printed on a substrate using a preset force. The substrate has a pressure sensitive material that is optically responsive in direct proportion to the amount of force imparted by the contact printing. The force of the contact printing causes the pressure sensitive material to form a pattern that is quantifiable to the amount of force. The pattern is then optically inspected and compared to sets of standards in order to quantify the amount of force that was used in printing. The thickness of the printed dielectric material is then calculated based on the quantified force by comparing to another set of standards. The electrical value of the printed material is calculated based on the calculated thickness of the printed dielectric material, the surface area of the printed dielectric material, and the dielectric constant of the dielectric material.
摘要:
A method and apparatus for an irreversible temperature sensor for measuring a peak exposure temperature. The apparatus is fabricated by printing an admixture of conductive nanoparticles on a dielectric substrate to form a film. The film has an electrical resistance that is inversely proportional to the exposure temperature. The electrical resistance also irreversibly decreases as the exposure temperature of the film increases. A portion of the film is exposed to a pulse of electromagnetic energy sufficient to render it substantially more electrically conductive than the portion that was not exposed. In use, the peak exposure temperature is determined by measuring the electrical resistance of the non-altered portion of the film and the electrical resistance of the portion that was exposed to the pulse of electromagnetic energy, and subtracting the electrical resistance of the altered portion from the electrical resistance of the portion that was not altered, to provide a difference value. The peak exposure temperature is then be calculated as a function of the difference value.
摘要:
A method and apparatus for an irreversible temperature sensor for measuring a peak exposure temperature. The apparatus is fabricated by printing an admixture of conductive nanoparticles on a dielectric substrate to form a film. The film has an electrical resistance that is inversely proportional to the exposure temperature. The electrical resistance also irreversibly decreases as the exposure temperature of the film increases. A portion of the film is exposed to a pulse of electromagnetic energy sufficient to render it substantially more electrically conductive than the portion that was not exposed. In use, the peak exposure temperature is determined by measuring the electrical resistance of the non-altered portion of the film and the electrical resistance of the portion that was exposed to the pulse of electromagnetic energy, and subtracting the electrical resistance of the altered portion from the electrical resistance of the portion that was not altered, to provide a difference value. The peak exposure temperature is then be calculated as a function of the difference value.
摘要:
A protective photochromic barrier film for a light-sensitive printed electronic substrate. Light-sensitive semiconductor devices on a dielectric substrate are electrically connected by conductors. A barrier layer containing photochromic dyes covers some or all of the light-sensitive semiconductor devices. Upon exposure to visible, infrared, or ultraviolet light, the photochromic dyes change chemical structure and decrease the amount of visible or non-visible light that can impinge upon the light-sensitive electronic devices. Upon removal of the visible or non-visible light, the photochromic dyes either revert to their original structure or maintain their altered state.
摘要:
Two or more semiconductor devices (21 and 22) are formed on a substrate (20) and are each comprised of a plurality of printed components (23 and 24). At least one such printed component (25) is shared by both such semiconductor devices.
摘要:
A printed transistor has a first gate (202) printed and disposed on a first side of a printed deposit of semiconductor material (201) and a second printed gate (301) disposed on an opposite side of the printed deposit of semiconductor material. By one approach these elements are provided using a serial printing process. By another approach these elements are provided through use of a lamination process.