摘要:
A ZnO asperity-covered carbon nanotube (CNT) device has been provided, along with a corresponding fabrication method. The method comprises: forming a substrate; growing CNTs from the substrate; conformally coating the CNTs with ZnO; annealing the ZnO-coated CNTs; and, forming ZnO asperities on the surface of the CNTs in response to the annealing. In one aspect, the ZnO asperities have a density in the range of about 100 to 1000 ZnO asperities per CNT. The density is dependent upon the deposited ZnO film thickness and annealing parameters. The CNTs are conformally coating with ZnO using a sputtering, chemical vapor deposition (CVD), spin-on, or atomic layer deposition (ALD). For example, an ALD process can be to deposit a layer of ZnO over the CNTs having a thickness in the range of 1.2 to 200 nanometers (nm).
摘要:
A method of fabricating a nanowire CHEMFET sensor mechanism includes preparing a silicon substrate; depositing a polycrystalline ZnO seed layer on the silicon substrate; patterning and etching the polycrystalline ZnO seed layer; depositing an insulating layer over the polycrystalline ZnO seed layer and the silicon substrate; patterning and etching the insulating layer to form contact holes to a source region and a drain region; metallizing the contact holes to form contacts for the source region and the drain region; depositing a passivation dielectric layer over the insulating layer and the contacts; patterning the passivation layer and etching to expose the polycrystalline ZnO seed layer between the source region and the drain region; and growing ZnO nanostructures on the exposed ZnO seed layer to form a ZnO nanostructure CHEMFET sensor device.
摘要:
A ZnO asperity-covered carbon nanotube (CNT) device has been provided, along with a corresponding fabrication method. The method comprises: forming a substrate; growing CNTs from the substrate; conformally coating the CNTs with ZnO; annealing the ZnO-coated CNTs; and, forming ZnO asperities on the surface of the CNTs in response to the annealing. In one aspect, the ZnO asperities have a density in the range of about 100 to 1000 ZnO asperities per CNT. The density is dependent upon the deposited ZnO film thickness and annealing parameters. The CNTs are conformally coating with ZnO using a sputtering, chemical vapor deposition (CVD), spin-on, or atomic layer deposition (ALD). For example, an ALD process can be to deposit a layer of ZnO over the CNTs having a thickness in the range of 1.2 to 200 nanometers (nm).
摘要:
A dual-gate MOSFET with metal gates and a method for setting threshold voltage in such a MOSFET is provided. The method comprises: forming a gate oxide layer overlying first and second channel regions; forming a first metal layer having a first thickness overlying the gate oxide layer; forming a second metal layer having a second thickness overlying the first metal layer first thickness; selectively removing the second metal layer overlying the first channel region; forming a third metal layer; establishing a first MOSFET with a gate work function responsive to the thicknesses of the first and third metal layer overlying the first channel region; and, establishing a second MOSFET, complementary to the first MOSFET, with a gate work function responsive to the combination of the thicknesses of the first, second, and third metal layers overlying the second channel region.
摘要:
A method of selectively enhancing the sensitivity of a metal oxide sensor includes fabricating a ZnO sensor having a ZnO sensor element therein; and exposing the ZnO sensor element to a plasma stream.
摘要:
A method, and corresponding transistor structure are provided for protecting the gate electrode from an underlying gate insulator. The method comprises: forming a gate insulator overlying a channel region; forming a first metal barrier overlying the gate insulator, having a thickness of less than 5 nanometers (nm); forming a second metal gate electrode overlying the first metal barrier, having a thickness of greater than 10 nm; and, establishing a gate electrode work function exclusively responsive to the second metal. The second metal gate electrode can be one of the following materials: elementary metals such as p+ poly, n+ poly. Ta, W, Re, RuO2, Pt, Ti, Hf, Zr, Cu, V, Ir, Ni, Mn, Co, NbO, Pd, Mo, TaSiN, and Nb, and binary metals such as WN, TaN, and TiN. The first metal barrier can be a binary metal, such as TaN, TiN, or WN.
摘要:
A method for selective ALD of ZnO on a wafer preparing a silicon wafer; patterning the silicon wafer with a blocking agent in selected regions where deposition of ZnO is to be inhibited, wherein the blocking agent is taken from a group of blocking agents includes isopropyl alcohol, acetone and deionized water; depositing a layer of ZnO on the wafer by ALD using diethyl zinc and H2O at a temperature of between about 140° C. to 170° C.; and removing the blocking agent from the wafer.
摘要翻译:在准备硅晶片的晶片上的ZnO的选择性ALD的方法; 在其中要抑制ZnO沉积的选定区域中用封闭剂对硅晶片进行图案化,其中封闭剂取自一组封闭剂,包括异丙醇,丙酮和去离子水; 在约140℃至170℃的温度下,使用二乙基锌和H 2 O 2,通过ALD在晶片上沉积ZnO层。 并从晶片上除去封闭剂。
摘要:
A method of forming a microlens structure is provided along with a CCD array structure employing a microlens array. An embodiment of the method comprises providing a substrate having a surface with photo-elements on the surface; depositing a transparent material overlying the surface of the substrate; depositing a CMP stop overlying the transparent material; depositing a lens-shaping layer overlying the CMP stop layer; depositing and patterning a photoresist layer overlying the lens-shaping layer to form openings to expose the lens-shaping layer; introducing a first isotropic etchant into the openings and etching the lens-shaping layer where exposed to form initial lens shapes having a radius; stripping the photoresist; exposing the lens-shaping layer to a second isotropic etchant to increase the radius of the lens shapes; transferring the lens shape through the CMP stop layer into the transparent material using an anisotropic etch; and depositing a lens material overlying the transparent material, whereby the lens shapes are at least partially filled with lens material. Planarizing the lens material using CMP and stopping at the CMP stop layer.
摘要:
A method of forming a layer of high-&kgr; dielectric material in an integrated circuit includes preparing a silicon substrate; depositing a first layer of metal oxide using ALD with a metal nitrate precursor; depositing another layer of metal oxide using ALD with a metal chloride precursor; and completing the integrated circuit.
摘要:
A method of fabricating an electroluminescent device includes, on a prepared substrate, depositing a rare earth-doped silicon-rich layer on gate oxide layer as a light emitting layer; and annealing and oxidizing the structure to repair any damage caused to the rare earth-doped silicon-rich layer; and incorporating the electroluminescent device into a CMOS IC. An electroluminescent device fabricated according to the method of the invention includes a substrate, a rare earth-doped silicon-rich layer formed on the gate oxide layer for emitting a light of a pre-determined wavelength; a top electrode formed on the rare earth-doped silicon-rich layer; and associated CMOS IC structures fabricated thereabout.