Abstract:
A method for fabricating a semiconductor power integrated circuit includes the steps of forming a semiconductor structure having at least one active region, wherein an active region includes a well region for forming a source and a drift region for forming a drain region, forming a trench for isolation of the active regions, wherein the trench has a predetermined depth from a surface of the semiconductor structure, forming a first TEOS-oxide layer inside the trench and above the semiconductor structure, wherein the first TEOS-oxide layer has a predetermined thickness from the surface of the semiconductor device, forming a second TEOS-oxide layer on the first TEOS-oxide layer, wherein a thickness of the second TEOS-oxide layer is smaller than that of the first TEOS-oxide layer, and performing a selective etching to the first and second TEOS-oxide layers, to thereby simultaneously form a field oxide layer pattern, a diode insulating layer pattern and a gate oxide layer pattern, to thereby reduce processing steps and obtain a low on-resistance.
Abstract:
A method for fabricating a semiconductor power integrated circuit includes the steps of forming a semiconductor structure having at least one active region, wherein an active region includes a well region for forming a source and a drift region for forming a drain region, forming a trench for isolation of the active regions, wherein the trench has a predetermined depth from a surface of the semiconductor structure, forming a first TEOS-oxide layer inside the trench and above the semiconductor structure, wherein the first TEOS-oxide layer has a predetermined thickness from the surface of the semiconductor device, forming a second TEOS-oxide layer on the first TEOS-oxide layer, wherein a thickness of the second TEOS-oxide layer is smaller than that of the first TEOS-oxide layer, and performing a selective etching to the first and second TEOS-oxide layers, to thereby simultaneously form a field oxide layer pattern, a diode insulating layer pattern and a gate oxide layer pattern, to thereby reduce processing steps and obtain a low on-resistance.
Abstract:
There is provided a simulator for CPR and defibrillator training, which may perform training and evaluation of CPR and a defibrillator so that when there is a patient in an emergency situation, effective first aid can be provided to the patient. Through the simulator for CPR and defibrillator training, CPR and the use of the defibrillator for emergency medical technicians such as a doctor, a nurse and an emergency medical technician can be systematically and repetitively trained, and a person in charge of training can identify whether or not the education is performed effectively by recording and evaluating a training situation. Also, through the simulator, the education of CPR and defibrillator training is possible so that not only the emergency medical technicians but also general people can perform emergency treatment effectively.
Abstract:
There is provided a simulator for CPR and defibrillator training, which may perform training and evaluation of CPR and a defibrillator so that when there is a patient in an emergency situation, effective first aid can be provided to the patient. Through the simulator for CPR and defibrillator training, CPR and the use of the defibrillator for emergency medical technicians such as a doctor, a nurse and an emergency medical technician can be systematically and repetitively trained, and a person in charge of training can identify whether or not the education is performed effectively by recording and evaluating a training situation. Also, through the simulator, the education of CPR and defibrillator training is possible so that not only the emergency medical technicians but also general people can perform emergency treatment effectively.
Abstract:
A method of forming an ohmic contact layer including forming an insulation layer pattern on a substrate, the insulation pattern layer having an opening selectively exposing a silicon bearing layer, forming a metal layer on the exposed silicon bearing layer using an electrode-less plating process, and forming a metal silicide layer from the silicon bearing layer and the metal layer using a silicidation process. Also, a method of forming metal wiring in a semiconductor device using the foregoing method of forming an ohmic contact layer.
Abstract:
A semiconductor device includes a plurality of channel structures on a semiconductor substrate. A bit line groove having opposing sidewalls is defined between sidewalls of adjacent ones of the plurality of channel structures. A plurality of bit lines are formed on corresponding ones of the opposing sidewalls, and the plurality of bit lines are electrically isolated from each other
Abstract:
In one embodiment, the non-volatile memory device includes a well of a first conductivity type formed in a substrate, and a first plurality of memory cell transistors connected in series to a bit line formed in the well. A buffer is formed in the substrate outside the well and is connected to the bit line. At least one de-coupling transistor is configured to de-couple the buffer from the bit line, and the de-coupling transistor is formed in the well.
Abstract:
A method for fabricating an inductor device includes the steps of forming a plurality of trenches in a substrate by selectively etching the substrate, implanting dopants into sidewalls and bottom portion of each trench, forming an oxide layer by oxidizing the trenches and the substrate and simultaneously forming a doped layer in the surroundings of the trenches by diffusing the dopants into the substrate, and forming a dielectric layer on a resultant structure to fill the entrance of the trenches, thereby forming air-gap layers inside the trenches, thereby reducing a parasitic capacitance and a magnetic coupling.
Abstract:
A pet exercise apparatus includes: a base module; a running module which has an exercise space formed therein in an axial direction and an inner circumferential surface or outer circumferential surface rotatably coupled to the base module; and an LED module provided in the base module or the running module to irradiate LED light to the exercise space. The pet exercise system may further includes: a rotary module which has an exercise space part formed therein as a space in which the pet may exercise and a gaze inducing part provided on an inner circumferential surface and inducing a pet's gaze so that the pet continuously moves in the exercise space part and may exercise; a support module supporting the rotary module so that the rotary module is rotatable according to the motion of the pet; a control module controlling an operation of the gaze inducing part; and a terminal including a communication part transmitting an operation control signal CI of the gaze inducing part to be transmitted to the control module.
Abstract:
A method of forming a semiconductor device can be provided by forming an opening that exposes a surface of an elevated source/drain region. The size of the opening can be reduced and a pre-amorphization implant (PAI) can be performed into the elevated source/drain region, through the opening, to form an amorphized portion of the elevated source/drain region. A metal-silicide can be formed from a metal and the amorphized portion.