Abstract:
A method for fabricating a semiconductor power integrated circuit includes the steps of forming a semiconductor structure having at least one active region, wherein an active region includes a well region for forming a source and a drift region for forming a drain region, forming a trench for isolation of the active regions, wherein the trench has a predetermined depth from a surface of the semiconductor structure, forming a first TEOS-oxide layer inside the trench and above the semiconductor structure, wherein the first TEOS-oxide layer has a predetermined thickness from the surface of the semiconductor device, forming a second TEOS-oxide layer on the first TEOS-oxide layer, wherein a thickness of the second TEOS-oxide layer is smaller than that of the first TEOS-oxide layer, and performing a selective etching to the first and second TEOS-oxide layers, to thereby simultaneously form a field oxide layer pattern, a diode insulating layer pattern and a gate oxide layer pattern, to thereby reduce processing steps and obtain a low on-resistance.
Abstract:
A method for fabricating a semiconductor power integrated circuit includes the steps of forming a semiconductor structure having at least one active region, wherein an active region includes a well region for forming a source and a drift region for forming a drain region, forming a trench for isolation of the active regions, wherein the trench has a predetermined depth from a surface of the semiconductor structure, forming a first TEOS-oxide layer inside the trench and above the semiconductor structure, wherein the first TEOS-oxide layer has a predetermined thickness from the surface of the semiconductor device, forming a second TEOS-oxide layer on the first TEOS-oxide layer, wherein a thickness of the second TEOS-oxide layer is smaller than that of the first TEOS-oxide layer, and performing a selective etching to the first and second TEOS-oxide layers, to thereby simultaneously form a field oxide layer pattern, a diode insulating layer pattern and a gate oxide layer pattern, to thereby reduce processing steps and obtain a low on-resistance.
Abstract:
A sealing apparatus and a method of manufacturing a flat display device using the sealing apparatus. The sealing apparatus to attach a first substrate and a second substrate to each other using an attachment member disposed between the first and second substrates, the sealing apparatus comprises a stage on which the first substrate is seated, a halogen lamp irradiating light, and a reflector reflecting light irradiated from the halogen lamp to the attachment member.
Abstract:
A laser irradiation apparatus for bonding a first substrate and a second substrate of a display device by melting a plurality of bonding members disposed between the first and second substrates to define cells when the display device is manufactured, the display device including light emitting elements disposed on a surface of the first substrate such that the bonding members respectively encompass lateral regions of the light emitting elements, the laser irradiation apparatus including a stage on which the first substrate is mounted, a laser oscillation member configured to irradiate a laser beam that melts the bonding members disposed between the first substrate and the second substrate, and a scanner configured to irradiate the laser beam incident from the laser oscillation member onto the bonding members, the scanner being configured to sequentially irradiate the laser beam on portions of the bonding members.
Abstract:
To minimize stress variations applied to mother glasses when a glass sealing material is melted via a laser to combine the mother glasses, a method of manufacturing a flat panel display device includes providing a plurality of emission units between a first substrate and a second substrate, wherein the first substrates faces the second substrate and each emission unit forms a unit display device; providing a plurality of walls between the first substrate and the second substrate, wherein each wall respectively surrounds one of the emission units; irradiating a laser beam onto the walls, wherein the laser beam is simultaneously irradiated to wall portions aligned in a row in a first direction; scanning the laser beam in a second direction, wherein the second direction is different from the first direction to irradiate other wall portions of the plurality of walls; and cutting the first and second substrates to obtain individual display devices.
Abstract:
A multiplying digital to analog converter comprising a digital to analog converter having a plurality of capacitors coupled in parallel, applying first signals to the capacitors during a sampling period, and applying second signals to the capacitors during an amplifying period, and an amplifier including a first amplifier electrically coupled to the digital to analog converter; a second amplifier electrically coupled to the first amplifier; and a first switch electrically coupled between an input end and an output end of the second amplifier, being turned off during a sampling period, and being turned off during an amplifying period.
Abstract:
An inrush current prevention circuit for a DC-DC converter is provided and in preferred aspects comprises a switching element that transforms an input voltage by being switched on and off and outputs the transformed voltage. A filter filtrates the outputted voltage, transformed via the switching element, and outputs the filtrated voltage as an output voltage. A reference voltage generator generates a reference voltage. An error amplifier compares the reference voltage and output voltage and outputs an error signal. A Pulse Width Modulation (PWM) signal generator generates a PWM signal to switch on and off the switching element according to the error signal. An on-off circuit either transmits or isolates the PWM signal to the switching element. An Electronic Control Unit (ECU) controls the on-off circuit. Preferred systems of the invention can prevent an inrush current immediately following power input or during reactivation of the DC-DC converter.
Abstract:
To minimize stress variations applied to mother glasses when a glass sealing material is melted via a laser to combine the mother glasses, a method of manufacturing a flat panel display device includes providing a plurality of emission units between a first substrate and a second substrate, wherein the first substrates faces the second substrate and each emission unit forms a unit display device; providing a plurality of walls between the first substrate and the second substrate, wherein each wall respectively surrounds one of the emission units; irradiating a laser beam onto the walls, wherein the laser beam is simultaneously irradiated to wall portions aligned in a row in a first direction; scanning the laser beam in a second direction, wherein the second direction is different from the first direction to irradiate other wall portions of the plurality of walls; and cutting the first and second substrates to obtain individual display devices.
Abstract:
Disclosed is a V-BLAST system for a MIMO communication system.In the V-BLAST system for a MIMO communication system, a pseudo inverse matrix calculator receives a channel transfer function matrix including channel information and produces a cofactor matrix and a determinant for a pseudo inverse matrix. A norm & minimum calculator calculates a minimum index for the cofactor matrix outputted from the pseudo inverse matrix calculator, a weight vector selector selects a row vector having the minimum index and calculates a transposed matrix for the row vector; an adder adds the transposed matrix to a received input symbol, and a subtractor subtracts the determinant to the output. A demapper performs a determined function operation to the output and produces estimated information.
Abstract:
Disclosed is a V-BLAST system for a MIMO communication system. In the V-BLAST system for a MIMO communication system, a pseudo inverse matrix calculator receives a channel transfer function matrix including channel information and produces a cofactor matrix and a determinant for a pseudo inverse matrix. A norm & minimum calculator calculates a minimum index for the cofactor matrix outputted from the pseudo inverse matrix calculator, a weight vector selector selects a row vector having the minimum index and calculates a transposed matrix for the row vector; an adder adds the transposed matrix to a received input symbol, and a subtractor subtracts the determinant to the output. A demapper performs a determined function operation to the output and produces estimated information.