摘要:
A semiconductor device in which an increase of contact resistance Rc between a metal contact and a plug due to misalignment between the metal contact and the plug can be reduced and the difficulty of a Cu filling process during the process of forming the plug may be reduced. The semiconductor device includes a substrate including an active area and a device isolation layer; a metal contact that is formed on the substrate and is electrically connected to the active area; a landing pad formed on the metal contact by electroless plating; and a plug that is formed on the landing pad and is electrically connected to the metal contact via the landing pad.
摘要:
Methods of forming an interlayer dielectric having an air gap are provided including forming a first insulating layer on a semiconductor substrate. The first insulating layer defines a trench. A metal wire is formed in the trench such that the metal wire is recessed beneath an upper surface of the first insulating layer. A metal layer is formed on the metal wire, wherein the metal layer includes a capping layer portion filling the recess, a upper portion formed on the capping layer portion, and an overhang portion formed on the portion of the first insulating layer adjacent to the trench protruding sideward from the upper portion. The first insulating layer is removed and a second insulating layer is formed on the semiconductor substrate to cover the metal layer, whereby an air gap is formed below the overhang portion of the metal layer. A portion of the second insulating layer is removed to expose the upper portion of the metal layer. The upper portion and the overhang portion of the metal layer are removed. A third insulating layer is formed on the semiconductor substrate from which the upper portion and the overhang portion have been removed to maintain the air gap.
摘要:
Provided is a semiconductor device including a fuse, in which a insulating layer surrounding the fuse or metal wiring is prevented from being damaged due to the cut of a fuse, which can occur when a repair process is performed. The semiconductor device includes a conductive line formed on a semiconductor layer, a protective layer formed on the conductive line, one or more fuses that are electrically connected to the conductive line, and a fuse protective layer formed on the one or more fuses, and spaced apart from the protective layer.
摘要:
Provided is a semiconductor device including a fuse, in which a insulating layer surrounding the fuse or metal wiring is prevented from being damaged due to the cut of a fuse, which can occur when a repair process is performed. The semiconductor device includes a conductive line formed on a semiconductor layer, a protective layer formed on the conductive line, one or more fuses that are electrically connected to the conductive line, and a fuse protective layer formed on the one or more fuses, and spaced apart from the protective layer.
摘要:
Provided are methods of manufacturing semiconductor devices. The methods may include forming a first insulation layer on a semiconductor substrate, forming a groove by selectively etching the first insulation layer, filling the groove with a copper-based conductive layer, depositing a cobalt-based capping layer on the copper-based conductive layer by electroless plating, and cleansing the first insulation layer and the cobalt-based capping layer using a basic cleansing solution.
摘要:
Provided are methods of manufacturing semiconductor devices. The methods may include forming a first insulation layer on a semiconductor substrate, forming a groove by selectively etching the first insulation layer, filling the groove with a copper-based conductive layer, depositing a cobalt-based capping layer on the copper-based conductive layer by electroless plating, and cleansing the first insulation layer and the cobalt-based capping layer using a basic cleansing solution.
摘要:
A semiconductor device in which an increase of contact resistance Rc between a metal contact and a plug due to misalignment between the metal contact and the plug can be reduced and the difficulty of a Cu filling process during the process of forming the plug may be reduced. The semiconductor device includes a substrate including an active area and a device isolation layer; a metal contact that is formed on the substrate and is electrically connected to the active area; a landing pad formed on the metal contact by electroless plating; and a plug that is formed on the landing pad and is electrically connected to the metal contact via the landing pad.
摘要:
A metal salicide layer is formed by sequentially depositing a physical vapor deposition (PVD) metal layer and a chemical vapor deposition (CVD) metal layer on a semiconductor device having an exposed silicon surface so as to form a double metal layer. The semiconductor device is annealed to react the double metal layer with the silicon surface. At least a portion of the double layer that has not reacted with the silicon surface is stripped. The semiconductor device is annealed after stripping at least the portion of the double metal layer.
摘要:
A method of forming a cobalt disilicide layer and a method of manufacturing a semiconductor device using the same are provided. The method of forming a cobalt disilicide layer includes forming a cobalt layer on at least a silicon surface of a semiconductor device using metal organic chemical vapor deposition by supplying a cobalt precursor having a formula Co2(CO)6(R1—C≡C—R2), where R1 is H or CH3, and R2 is hydrogen, t-butyl, phenyl, methyl, or ethyl, as a source gas. Then, a capping layer is formed on the cobalt layer. A first thermal treatment is then performed on the semiconductor device in an ultra high vacuum, for example, under a pressure of 10−9-10−3 torr, to react silicon with cobalt. Cobalt unreacted during the first thermal treatment and the capping layer are then removed and a second thermal treatment is performed on the semiconductor device to form the cobalt disilicide (CoSi2) layer.
摘要:
A metal salicide layer is formed by sequentially depositing a physical vapor deposition (PVD) metal layer and a chemical vapor deposition (CVD) metal layer on a semiconductor device having an exposed silicon surface so as to form a double metal layer. The semiconductor device is annealed to react the double metal layer with the silicon surface. At least a portion of the double layer that has not reacted with the silicon surface is stripped. The semiconductor device is annealed after stripping at least the portion of the double metal layer.