摘要:
Disclosed are an indium Tin Oxide (ITO) target, a method for manufacturing the same, a transparent conductive film of ITO, and a method for manufacturing the transparent conductive film of ITO. The ITO target includes at least one oxide selected from the group consisting of Sm2O3 and Yb2O3, wherein an amount of the oxide is about 0.5 wt. % to about 10 wt. % based on the weight of the target.
摘要翻译:公开了一种氧化铟锡(ITO)靶,其制造方法,ITO的透明导电膜以及ITO的透明导电膜的制造方法。 ITO靶包括选自Sm 2 O 3和Yb 2 O 3中的至少一种氧化物,其中氧化物的量为约0.5重量%。 %至约10wt。 基于目标的重量%。
摘要:
A method of forming a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate, and the interlayer insulating layer may have a contact hole therein exposing a portion of the semiconductor substrate. A single crystal semiconductor plug may be formed in the contact hole and on portions of the interlayer insulating layer adjacent the contact hole opposite the semiconductor substrate, and portions of the interlayer insulating layer opposite the semiconductor substrate may be free of the single crystal semiconductor plug. Portions of the single crystal semiconductor plug in the contact hole may be removed while maintaining portions of the single crystal semiconductor plug on portions of the interlayer insulating layer adjacent the contact hole as a single crystal semiconductor contact pattern. After removing portions of the single crystal semiconductor plug, a single crystal semiconductor layer may be formed on the interlayer insulating layer and on the single crystal semiconductor contact pattern. A second interlayer insulating layer may be formed on the single crystal semiconductor layer, and a common contact hole may be formed through the second interlayer insulating layer, through the single crystal semiconductor layer, and through the first interlayer insulating layer to expose a portion of semiconductor substrate. In addition, a conductive contact plug may be formed in the common contact hole in contact with the semiconductor substrate. Related devices are also discussed.
摘要:
Disclosed are an indium Tin Oxide (ITO) target, a method for manufacturing the same, a transparent conductive film of ITO, and a method for manufacturing the transparent conductive film of ITO. The ITO target includes at least one oxide selected from the group consisting of Sm2O3 and Yb2O3, wherein an amount of the oxide is about 0.5 wt. % to about 10 wt. % based on the weight of the target.
摘要翻译:公开了一种氧化铟锡(ITO)靶,其制造方法,ITO的透明导电膜以及ITO的透明导电膜的制造方法。 ITO靶包括选自Sm 2 O 3和Yb 2 O 3中的至少一种氧化物,其中氧化物的量为约0.5重量%。 %至约10wt。 基于目标的重量%。
摘要:
Contacts having different characteristics may be created by forming a first silicide layer over a first device region of a substrate, and then forming a second silicide layer over a second device region while simultaneously further forming the first silicide layer. A first contact hole may be formed in a dielectric layer over a first device region of a substrate. A silicide layer may then be formed in the first contact hole. A second contact hole may be formed after the first contact hole and silicide layer is formed. A second silicidation may then be performed in the first and second contact holes.
摘要:
A method of fabricating a semiconductor device includes forming a preliminary gate pattern on a semiconductor substrate. The preliminary gate pattern includes a gate oxide pattern, a conductive pattern, and a sacrificial insulating pattern. The method further includes forming spacers on opposite sidewalls of the preliminary gate pattern, forming an interlayer dielectric pattern to expose the sacrificial insulating pattern, removing the sacrificial insulating pattern to form an opening to expose the conductive pattern, transforming the conductive pattern into a metal silicide layer and forming a metal barrier pattern along an inner profile of the opening and a metal conductive pattern to fill the opening including the metal barrier pattern. The metal silicide layer and the metal conductive pattern constitute a gate electrode.
摘要:
Methods of forming metal silicide layers include a convection-based annealing step to convert a metal layer into a metal silicide layer. These methods may include forming a silicon layer on a substrate and forming a metal layer (e.g., nickel layer) in direct contact with the silicon layer. A step is then performed to convert at least a portion of the metal layer into a metal silicide layer. This conversion step is includes exposing the metal layer to an inert heat transferring gas (e.g., argon, nitrogen) in a convection or conduction apparatus.
摘要:
A method and an apparatus for sharing landmark information of a location service in a wireless communication terminal are provided. The method includes obtaining location information in a JAVA application and storing the landmark information based the location information using a backup database format in a file system region.
摘要:
Methods of forming a metal salicide layer can include forming a metal layer on a substrate and forming a metal silicide layer on the metal layer using a first thermal process at a first temperature. Then a second process is performed, in-situ with the first thermal process, on the metal layer at a second temperature that is less than the first temperature.
摘要:
There is provided a method of forming a semiconductor device having stacked transistors. When forming a contact hole for connecting the stacked transistors to each other, ohmic layers on the bottom and the sidewall of the common contact hole are separately formed. As a result, the respective ohmic layers are optimally formed to meet requirements or conditions. Accordingly, the contact resistance of the common contact may be minimized so that it is possible to enhance the speed of the semiconductor device.
摘要:
An integrated circuit device, e.g., a memory device, includes a substrate, a first insulation layer on the substrate, and a contact pad disposed in the first insulation layer in direct contact with the substrate. A second insulation layer is disposed on the first insulation layer. A conductive pattern, e.g., a damascene bit line, is disposed in the second insulation layer. A conductive plug extends through the second insulation layer to contact the contact pad and is self-aligned to the conductive pattern. An insulation film may separate the conductive pattern and the conductive plug. A glue layer may be disposed between the conductive pattern and the second insulation layer. The device may further include a third insulation layer on the second insulation layer and the conductive pattern, and the conductive plug may extend through the second and third insulation layers.